Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Увеличение максимально допустимого обратного напряжения VRRM при последовательном включении выпрямительных диодов

Так как диоды, рассчитанные на высокое обратное напряжение (которое может достигать 1700 В при применении силового трансформатора, используемого в рассматриваемом примере) не являются широко распространенными компонентами, то в высоковольтном источнике питания с дроссельным сглаживающим фильтром используются три последовательно включенных выпрямительных диода, позволяющие троекратно увеличить значение максимально допустимого обратного напряжения VRRM каждого из них. Однако, при этом необходимо использовать выравнивающие напряжения конденсаторы, включенные параллельно каждому диоду, для того, чтобы обеспечить приложение к ним равных по величине обратных напряжения. Аргументы для такого подхода совершенно аналогичны тем, которые использовались при рассмотрении действия выравнивающих напряжения резисторов при последовательном включении электролитических конденсаторов. Выпрямительные диоды включены последовательно, следовательно, по ним протекает одинаковый по величине ток, поэтому можно принять, что одинаковый ток обеспечит одинаковые по величине заряды (Q = It). Обратное напряжение, которое будет приложенное к каждому из диодов, во многом определяется величиной барьерной емкости его перехода в момент выключения (Q = CV), а также удельным сопротивлением самого перехода (влияющим на рассасывание неосновных носителей в переходе при выключении диода), однако эти значения могут изменяться от элемента к элементу, что будет приводить к изменениям в величине обратного напряжения. Автор произвел замеры емкости Сreverce диодов серии STTA512D, которое составило порядка 600 мкФ. С целью подавить влияние от возможного разброса этой величины используются пленочные пластиковые шунтирующие конденсаторы с емкостью 10 нФ, которые должны гарантировать, что ни на одном из выпрямительных диодов величина обратного напряжения не превысит значения максимально допустимого обратного напряжения VRRM.

Принципиальная схема улучшенного источника питания µ-повторителя блока частотной коррекции RIAA каскада предусилителя

Рис. 6.48 Принципиальная схема улучшенного источника питания µ-повторителя блока частотной коррекции RIAA каскада предусилителя

При выключении диодов через них проходит ток утечки (обратный ток диода), оцениваемый значением в несколько миллиампер. С другой стороны, это явление можно было бы рассматривать, как схему параллельного включения идеального по своим характеристикам диода с сопротивлением утечки. После того, как диоды оказались включенными последовательно, принцип действия делителя напряжения мог бы вызвать появление на неуравновешенных по величине сопротивлениях утечки падения напряжений, которые могли бы превысить по величине максимально допустимые значения обратного напряжения VRRM диодов. Проблема может быть решена либо путем согласования по величине токов утечки используемых в схеме диодов, либо включением резистора параллельно каждому диоду, который пропускал бы ток, в несколько раз превышающий ожидаемый ток утечки. В рассматриваемой схеме к каждому из диодов в закрытом состоянии приложено напряжение 589 В, поэтому через резистор с сопротивлением 1 МОм протекает ток величиной 589 мкА, который намного превосходит ток утечки диода. К сожалению, каждый резистор должен иметь мощность рассеяния 2 Вт, бесполезно выделяя ее в виде тепла.

Компенсация разбаланса сопротивлений полуобмоток трансформатора, имеющих отвод от средней точки

Трансформатор, обмотки которого имеют отвод от средней точки, позволяют экономить на количестве диодов и шунтирующих конденсаторах для выпрямителя, но добавляют новые проблемы. Обмотки трансформаторов, в которых выполнен отвод от средней точки, наматываются на каркасе одна на другую, поэтому диаметр внешней полуобмотки всегда несколько больше, чем расположенной внутри, что приводит к несколько большему значению сопротивления этой полуобмотки из-за более длинного провода. Если не учесть разницу в величинах сопротивлений полуобмоток и не компенсировать ее введением внешнего добавочного сопротивления к внутренней полуобмотке трансформатора, то на выходе выпрямителя появится составляющая пульсаций, имеющая частоту сетевого питания, которая при этом не будет достаточно хорошо ослабляться последующим сглаживающим фильтром, рассчитанным на фильтрацию составляющей с удвоенной частотой сети. Этот факт является достаточно неприятным, однако, добавление в схему недорогого резистора, выравнивающего значения сопротивлений обмоток, устраняет этот дефект.

Примечание 1. Задержка включения высокого напряжения (нормально разомкнутые контакты реле) составляет: 41с, при частоте сетевого питания 50 Гц, 34 с при частоте сетевого питания 60 Гц.

Задержка времени включения цепей прохождения звукового сигнала (нормально-замкнутые контакты реле): дополнительно 2с к времени задержки подачи высоковольтного напряжения.

Примечание 2. Как транзистор MJE340, так и интегральный стабилизатор напряжения 317Т серии должны монтироваться с соблюдением тщательной электрической изоляции на соответствующих теплоотводящих радиаторах. В качестве радиаторов можно, например, использовать алюминиевый уголок с толщиной стенки 3 мм.

Примечание 3. Ток подогревателей катодов в режиме пониженного энергопотребления: 234 мА; сопротивление холодной нити накала: 24 Ом; напряжение холодной нити накала: 5,6 В; мощность, выделяющаяся в интегральной микросхеме 317Т серии: 6,9 Вт.

Примечание 4. Напряжение накала в режиме пониженного энергопотребления: 16 В; мощность, выделяющаяся в интегральной микросхеме 317Т серии: 4,4 Вт. Ток разогретых нитей накала: 300 мА; напряжение накала при разогретых катодах: 25,2 В; мощность, выделяющаяся в интегральной микросхеме 317Т серии: 2,9 Вт

Примечание 5. Для обеих логических интегральных микросхем обязательно подключение керамических конденсаторов 100 нФ между выводами 0 В и +5 В.

Схема задержки включения высоковольтного напряжения

В самом начале ламповые выпрямители рассматривались в качестве примера плавного включения ламповых электронных схем (поскольку разогрев вакуумных диодов — кенотронов требует определенного времени). Однако ламповые выпрямители являются дорогостоящими. В отличие от них схемы с использованием полупроводниковых выпрямителей проще, но они обычно подают высоковольтное напряжение в ламповую схему до того, как последняя оказывается подготовленной к работе.

Как и прежде, для того, чтобы плавно подать напряжение питания на высоковольтный трансформатор (что автоматически обеспечит и плавную подачу выпрямленного высокого напряжения в анодные цепи ламп питаемого усилителя), используется твердотельное переключающее реле. Данное реле обеспечивает задержку включения порядка 41с, которая позволяет катодам прогреться от температуры, характерной для режима пониженного энергопотребления, до ее рабочего значения.

Дополнительно к этому обеспечивается выходной сигнал для управления реле, у которого нормально замкнутые контакты включены параллельно входу соответствующего предусилителя. Напряжение на реле подается примерно через 2с после того, как подано высоковольтное напряжение. При выключении питания, это реле замыкает контакты в самом начале падения питающего напряжения. Таким образом, предотвращается появление низкочастотных импульсных помех при включении и выключении, которые могли бы повредить транзисторы, если таковые имеются во вспомогательных цепях усилителя, а также проявились бы в виде щелчков в громкоговорителях.

Рассмотрим работа схемы задержки. Напряжение низковольтного трансформатора выпрямляется по простейшей однополупериодной схеме (используя один из диодов моста низковольтного выпрямителя) и через резистор с сопротивлением 30 кОм (чтобы снизить постоянную составляющую выпрямленного этой схемой тока, протекающего по обмотке трансформатора) подается на логическую схему. Импульсное напряжение, имеющее частоту 50 Гц, ограничивается по амплитуде до значения примерно 5 В с использованием стабилитрона, имеющего рабочее напряжение 4,7 В. Конденсатор, имеющий емкость 10 нФ, фильтрует высокочастотные шумы, которые в противном случае заставляли бы ложно запускаться счетчик импульсов, выполненный на логической интегральной микросхеме серии 4040. Состояние выхода QL счетчика 4040 изменяется от уровня логического нуля (низкий уровень 0 В) до уровня логической единицы (высокий уровень 5 В) после каждых 2048 импульсов (период колебаний импульсного сигнала равен периоду колебаний синусоидального напряжения сетевого питания, поскольку схема выпрямления однополупериодная). Нарастающий фронт положительного импульса инициирует во включенной за ним интегральной микросхеме 74 D-типа подачу логической единицы с ее входа D на выход Q, что, в свою очередь, обеспечивает подачу напряжения на реле высоковольтного напряжения.

Одновременно с этим сигнал с выхода Q высоковольтного реле поступает на вход D второй половины интегральной микросхемы 74 D-типа. Однако, оно но не поступит на выход этой микросхемы до тех пор, пока состояние выхода QH счетчика 4040 опять не изменится с уровня логического нуля до уровня логической единицы, что произойдет только по истечении времени, равному 128 периодам колебаний сетевого напряжения. Инвертирующий выход Q используется для включения транзистора типа ВС558В, питающего реле (одного или нескольких), закорачивающих цепи прохождения звукового сигнала на входе усилителя. Реле должны шунтироваться диодами, чтобы предотвратить появление противодействующих (обратно-индуцированных) выбросов, способных повредить задающие транзисторы.

 

 

 

Информация 2018

 

Информация 2018

 

Продолжение

Усилитель мощности должен обеспечивать повышение мощности поступающего на его вход сигнала с фиксированным коэффициентом усиления и передачу его с требуемой полезной мощностью в нагрузку, например, в громкоговорители. При этом в широком диапазоне изменения нагрузки усилитель не должен вносить (сверх допустимого техническими требованиями и стандартами) помех и искажений, таких как фон, шумы, паразитные автоколебания (осцилляции), линейные и нелинейные искажения усиливаемого аудиосигнала. Дополнительно к этому усилитель мощности должен быть нечувствительным к таким нарушениям режима своей работы, как короткое замыкание или холостой ход (обрыв) нагрузки. Ниже будет показано, что выполнение этих требований является далеко непростой задачей и для ее достижения требуется как тщательность конструкторской проработки, так и точность ее воплощения на практике.

Определяющим звеном всего усилителя является его выходной (оконечный) каскад. Применяемые в нем решения зачастую задают топологию всех остальных цепей усилителя, поэтому анализ усилителя начнется с выходного каскада.

Промышленные приемо-усилительные электронные лампы, предназначенные для работы в диапазоне звуковых частот, являются приборами с высоким импедансом (высокими значениями входного и выходного сопротивления), при этом амплитуда выходного напряжения усилительных каскадов может составлять несколько сотен вольт, но значение тока не будет превышать несколько десятков миллиампер. Однако применяемый в качестве нагрузки громкоговоритель, имеющий, как правило, номинальное значение входного сопротивления порядка 4—8 Ом, требует напряжения питания в несколько десятков вольт, но значения токов при этом достигают нескольких ампер. Таким образом, необходимо согласование выходного каскада лампового усилителя с громко-говорителями, как по сопротивлению, так и по току и напряжению. В противном случае, возможен выход из строя как громкоговорителей, так и ламп. Очевидным решением данной проблемы является применение выходного трансформатора, согласующего нагрузку в виде громкоговорителя с выходными характеристиками электронной лампы или совокупности ламп выходного каскада (в случае, когда каскад образован не одной а несколькими лампами).

Необходимость применения выходного трансформатора является отправным моментом при решении проблемы разработки лампового выходного каскада. Ранее уже указывалось, что характеристики трансформаторов слишком далеки от идеальных и, в итоге, качество или эффективность работы лампового усилителя во многом определяется качеством его далеко не идеального выходного трансформатора. Все же, вопреки данному факту выходной каскад с трансформаторной связью оказался превосходным инженерным решением и используется в большинстве ламповых усилителей, за исключением ряда специфических (см. далее раздел: Разработка бестрансфор-маторных выходных каскадов).

 
 
Сайт создан в системе