Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Электронная эмиссия

Основным электродом каждого электровакуумного прибора является катод, эмитирующий электроны.

Электронной эмиссией называют процесс выхода электронов из твердых или жидких тел в вакуум или газ. Чтобы вызвать электронную эмиссию, надо сообщить электронам добавочную энергию, которую называют работой выхода. Она различна для разных металлов и составляет несколько электрон-вольт. У металлов, имеющих большие по сравнению с другими межатомные расстояния, работа выхода меньше. К ним относятся щелочные и щелочноземельные металлы, например цезий, барий, кальций.

Если на поверхности основного металла расположены атомы веществ, отдающие электроны данному металлу, то наблюдается усиление эмиссии. Такие вещества называются активирующими. Можно также уменьшить работу выхода путем покрытия поверхности металла слоем оксида щелочных и щелочноземельных металлов.

Рассмотрим основные виды электронной эмиссии.

Термоэлектронная эмиссия обусловлена нагревом тела, эмитирующего электроны, и широко используется в электронных приборах. С повышением температуры энергия электронов проводимости в проводнике или полупроводнике растет и может оказаться достаточной для совершения работы выхода. Если вылетевшие электроны не отводятся ускоряющим полем от эмитирующей поверхности, то около нее образуется скопление электронов («электронное облачко»). В нем энергии электронов различны и средняя энергия обычно составляет десятые доли электрон-вольта.

«Электронное облачко» находится в динамическом равновесии. Новые электроны вылетают из нагретого тела, а ранее вылетевшие падают обратно. Это явление напоминает испарение жидкости в замкнутом сосуде. Насыщенный пар над такой жидкостью находится в динамическом равновесии: одни молекулы возвращаются в жидкость, а другие, получившие при нагреве достаточную энергию, вылетают из жидкости.

В приборах с накаленным активированным катодом (например, оксидным) наблюдается значительное усиление термоэлектронной эмиссии под влиянием внешнего ускоряющего поля (эффект Шоттки). Если бы катод не был накален, то эмиссия отсутствовала бы. А при высокой температуре и наличии внешнего ускоряющего поля вылетает дополнительно много электронов, которые при отсутствии поля не могли бы выйти. При кратковременном действии сильного поля выход электронов из накаленных оксидных и других активированных катодов очень велик. Такая эмиссия в виде кратковременных импульсов тока используется в некоторых электронных и ионных приборах.

Электростатическая (или авщоэлектронная) эмиссия представляет собой вырывание электронов сильным электрическим полем. Эту эмиссию иногда называют «холодной», что неудачно, так как все виды эмиссии, кроме термоэлектронной, можно причислить к «холодным».

Выход электронов при нормальной (комнатной) температуре происходит с помощью электрических полей напряженностью не менее 105 В/см.

Электростатическая эмиссия значительно усиливается при шероховатой поверхности, что объясняется концентрацией поля у микроскопических выступов этой поверхности. При наличии активирующих, особенно оксидных, покрытий электростатическая эмиссия также усиливается. Помимо уменьшения работы выхода, свойственного оксидному слою, здесь играет роль проникновение внешнего поля в полупроводниковый оксидный слой и шероховатость поверхности оксида.

Вторичная электронная эмиссия обусловлена ударами электронов о поверхность тела. При этом ударяющие электроны называются первичными. Они проникают в поверхностный слой и отдают свою энергию электронам данного вещества. Некоторые из последних, получив значительную энергию, могут выйти из тела. Такие электроны называются вторичными. Вторичная эмиссия обычно возникает при энергии первичных электронов 10—15 эВ и выше. Если энергия первичного электрона достаточно велика, то он может выбить несколько вторичных электронов.

Вторичная эмиссия характеризуется коэффициентом вторичной эмиссии а, который равен отношению числа вторичных электронов п2 к числу первичных n1:

σ = n2/n1. (15.5)

Коэффициент σ зависит от вещества тела, структуры его поверхности, энергии первичных электронов, угла их падения и некоторых других факторов. Для чистых металлов максимальное значение а бывает в пределах 0,5—1,8. При наличии активирующих покрытий а достигает 10 и более. Для интенсивной вторичной эмиссии применяют сплавы магния с серебром, алюминия с медью, бериллия с медью и др. У них коэффициент σ может быть в пределах 2—12 и больше, причем эмиссия более устойчива, нежели у других веществ. Вторичная эмиссия наблюдается также у полупроводников и диэлектриков.

На рис. 15.5 дана зависимость коэффициента σ от энергии первичных электронов W1 При W1 < 10 - 15 эВ вторичной эмиссии нет. Затем она с ростом W1 усиливается, доходя до максимума, после чего ослабевает. Кривая 1 — зависимость для чистого металла, а кривая 2 — для металла с активирующим покрытием. Максимум вторичной эмиссии достигается обычно при энергии W1 в сотни электрон-вольт. Снижение σ при более высоких значениях W1 объясняется тем, что первичные электроны проникают более глубоко и передают энергию электронам, находящимся дальше от поверхности. Последние передают полученную энергию другим электронам и не могут дойти до поверхности. Подобно этому камень, падающий в воду с небольшой скоростью, вызывает сильное разбрызгивание воды; тот же камень при большой скорости быстро входит в воду, не создавая брызг.

Вторичные электроны вылетают в различных направлениях и с различными энергиями. Если они не отводятся ускоряющим полем, то образуют около поверхности тела объемный заряд («электронное облачко»). Энергии большинства вторичных электронов значительно выше, нежели энергии термоэлектронов.

Зависимость коэффициента вторичной эмиссии от энергии первичных электронов

Рис. 15.5. Зависимость коэффициента вторичной эмиссии от энергии первичных электронов

 

Использование вторичной эмиссии много лет затруднялось тем, что не обеспечивалась ее устойчивость. В дальнейшем были изготовлены устойчиво работающие вторично-электронные катоды из сплавов металлов и стало возможным создание более совершенных электровакуумных приборов со вторичной эмиссией.

Электронная эмиссия под ударами тяжелых частиц имеет сходство со вторичной эмиссией. В большинстве случаев испускание электронов происходит от бомбардировки тела ионами. Для характеристики такой эмиссии служит коэффициент выбивания электронов δ, равный отношению числа выбитых электронов пе к- числу ударивших ионов ni:

δ = nв/ni. (15.6)

Значение δ зависит от вещества бомбардируемого тела, от массы и энергии бомбардирующих ионов, состояния поверхности, наличия или отсутствия на ней активирующих покрытий, угла падения ионов и других факторов. Обычно коэффициент δ значительно меньше единицы, но для полупроводниковых и тонких диэлектрических слоев наблюдаются значения δ > 1. Наименьшая энергия ионов, необходимая для выбивания электронов, составляет десятки электрон-вольт. При наличии активирующих покрытий коэффициент δ возрастает. Энергии большинства выбитых электронов 1 — 3 эВ.

     >>>>>     0
!...................
20
!...................
40
!...................
60
!...................
80
!...................
100
!...................
120
!...................
 

 

 

Информация 2018

 

Продолжение

Термоэлектронный катод должен быть долговечным и обеспечивать устойчивую (стабильную) эмиссию при возможно меньших затратах энергии на накал. Поверхность катода не должна разрушаться от ионной бомбардировки. Даже в высоком вакууме имеется некоторое число положительных ионов. Они ускоренно летят к катоду. Чем выше анодное напряжение, тем с большей силой ионы ударяют в катод.

Экономичность катода характеризуется его эффективностью. Она показывает, какой ток эмиссии можно получить на 1 Вт мощности накала. У современных катодов в режиме непрерывной работы эффективность может быть от единиц до сотен миллиампер на ватт.

Рабочая температура у разных катодов примерно от 700 до 2300 °С. Долговечность катода определяется сроком, по истечении которого выход электронов уменьшается на 10%. Катоды имеют долговечность от сотен до десятков тысяч часов.

При увеличении рабочей температуры повышается эффективность, и поэтому для усиления эмиссии иногда несколько повышают накал, но при этом сокращается долговечность.

Простые катоды, т. е. катоды из чистых металлов, делаются почти исключительно из вольфрама (редко из тантала) и имеют прямой накал. Рабочая температура вольфрамовых катодов 2100 — 2300 °С, что соответствует накалу до светло-желтого или белого цвета. Долговечность этих катодов определяется ослаблением эмиссии из-за уменьшения толщины катода вследствие распыления вольфрама.

Достоинство вольфрамового катода — устойчивость эмиссии. После временного перекала она не уменьшается. Стойкость вольфрамового катода к ионной бомбардировке делает его особенно пригодным для мощных ламп, работающих с высокими анодными напряжениями. Катоды из вольфрама применяются также в специальных электрометри-ческих лампах, в которых важна стабильность эмиссии. Основной недостаток вольфрамового катода — низкая эффективность (единицы миллиампер на ватт). Вследствие высокой температуры интенсивно испускаются тепловые и световые лучи, на что бесполезно расходуется почти вся мощность накала.

У многих типов сложных катодов на поверхность чистого металла наносится активирующий слой, который обеспечивает интенсивную эмиссию при сравнительно невысоких температурах.

 
 
Сайт создан в системе