Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Краткие сведения о различных газоразрядных приборах

Помимо рассмотренных газоразрядных приборов в РЭА встречаются и некоторые другие. Так, например, для счета импульсов предназначены приборы тлеющего разряда декатроны с большим числом катодов, расположенных по окружности. Приходящие импульсы переводят разряд с одного катода на следующий. По свечению одного из десяти индикаторных катодов определяется число импульсов. Каскадное включение нескольких декатронов позволяет отсчитывать не только единицы импульсов, но также десятки, сотни, тысячи и т. д. Это достигается тем, что при разряде около десятого катода декатрона, считающего единицы импульсов, передается импульс на следующий декатрон, считающий десятки импульсов, и возникает свечение на первом катоде, и т. д. В настоящее время счетные устройства с цифровыми индикаторами вытеснили декатроны.

Среди приборов дугового разряда следует отметить газотроны, представляющие собой мощные диоды с термоэлектронным катодом, наполненные инертным газом или парами ртути. Они предназначены для выпрямления высоких напряжений и больших токов, причем падение напряжения на самих газотронах всего лишь 10—30 В. В качестве мощных выпрямителей служат также ртутные вентили и экситроны с одним или несколькими анодами, имеющие жидкий ртутный катод с электростатической эмиссией. Более совершенные ртутные вентили — игнитроны имеют также ртутный катод и дополнительный пусковой электрод, облегчающий возникновение дугового разряда.

Широко применялись для выпрямления, в схемах автоматики и во многих других устройствах тиратроны дугового разряда. Это газонаполненные триоды с термоэлектронным катодом. У них, так же как и у тиратронов тлеющего разряда, сетка теряет свое управляющее действие после возникновения дугового разряда, т. е. она может только удерживать тиратрон в запертом состоянии и отпирать его. В некоторых тиратронах имеется еще экранирующая сетка. Изменяя напряжение на ней, можно изменять напряжение возникновения разряда. На тиратронах дугового разряда работают управляемые выпрямители, в которых выпрямленное напряжение регулируется изменением напряжения управляющих сеток тиратронов. Расход мощности на процесс управления в цепях этих сеток очень небольшой, и за счет этого получается высокий КПД. Специальные импульсные тиратроны дугового разряда служат для получения кратковременных импульсов большой мощности.

Одна из разновидностей тиратронов дугового разряда — таситроны, в которых благодаря особой конструкции сетка управляет не только возникновением, но и прекращением разряда. Оригинальным прибором является аркатрон, представляющий собой тиратрон дугового разряда, в котором катод нагревается не током, а за счет ионной бомбардировки.

Все эти газоразрядные приборы весьма инерционны и поэтому непригодны для высоких частот, так как процесс рекомбинации после выключения (запирания) прибора требует значительного времени. Приборы с инертными газами могут работать на частотах в десятки килогерц, а приборы с ртутными парами на гораздо более низких частотах.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Информация 2018

 

Продолжение

Фотоэлектронная эмиссия, называемая иначе внешним фотоэффектом, представляет собой электронную эмиссию под действием электромагнитного излучения. Эмитирующий электрод при этом называют фотоэлектронным катодом (фотокатодом), а испускаемые им электроны — фотоэлектронами.

Начало изучения фотоэлектронной эмиссии относится к 1886 г., когда немецкий ученый Г. Герц заметил, что напряжение возникновения электрического разряда между электродами снижается, если осветить один из этих электродов. Это явление с 1888 г. стал исследовать профессор Московского университета А. Г. Столетов. Он установил важные свойства внешнего фотоэффекта, но не мог его объяснить, так как в то время еще не были известны электроны.

Рассмотрим законы и характерные особенности фотоэлектронной эмиссии.

1. Закон Столетова. Фототок Iф, возникающий за счет фотоэлектронной эмиссии, пропорционален световому по току Ф:

Iф = SФ, (22.1)

где S — чувствительность фотокатода, выражаемая обычно в микроамперах на люмен.

Если поток Ф монохроматичен, т. е. содержит лучи только одной длины волны, то чувствительность называют монохроматической и обозначают Sλ. Чувствительность к потоку белого (немоно-хроматического) света, состоящего из лучей с разной длиной волны, называют интегральной и обозначают SΣ.

 
 
Сайт создан в системе