Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Отражательный клистрон

Схема включения отражательного (однорезонаторного) клистрона, изобретенного советским ученым В. Ф. Коваленко, показана на рис. 25.3, а. В нем один объемный резонатор служит одновременно модулятором и уловителем. На резонатор подано высокое постоянное напряжение Up для ускорения электронов. За резонатором находится отражатель — электрод, имеющий отрицательное напряжение U0 относительно катода. Для лучшей фокусировки электронного потока катод окружен цилиндром, который называют фокусирующим электродом и обычно соединяют с катодом. Энергия от резонатора отбирается с помощью витка связи и коаксиальной линии.

Поток электронов под действием ускоряющего поля влетает в резонатор и возбуждает в нем импульс наведенного тока. В резонаторе возникают колебания, создающие между его сетками переменное электрическое поле. Это поле модулирует электронный поток по скорости. Таким образом, электроны вылетают с различной скоростью из резонатора в пространство дрейфа (между резонатором и отражателем), в котором действует постоянное тормозящее поле. Электроны в этом поле тормозятся, останавливаются и ускоренно возвращаются в резонатор. Чем больше скорость электрона, тем дальше углубляется он в тормозящее поле и больше времени находится в этом поле. В результате электроны, пролетевшие через резонатор во время положительного полупериода и получившие от переменного электрического поля добавочную скорость, могут вернуться обратно в тот же момент, когда возвратятся электроны, пролетевшие через резонатор позднее, во время отрицательного полупериода, и получившие торможение от переменного поля.

Принцип устройства и работы отражательного клистрона

Рис. 25.3. Принцип устройства и работы отражательного клистрона

 

Это наглядно иллюстрируется следующим примером. Если бросить вверх друг за другом три одинаковых предмета, но первый с наибольшей скоростью, а третий — с наименьшей, то все они могут упасть обратно одновременно. Первый из них поднимется выше всех и будет в движении наибольшее время, а последний поднимется ниже всех и возвратится через наименьший промежуток времени.

Хотя модуляция скорости в отражательном клистроне происходит так же, как и в пролетном, но процесс группирования иной. На рис. 25.3, б показаны графики движения электронов в отражательном клистроне, поясняющие принцип группирования. Графики эти представляют собой не прямые, а кривые линии (параболы), так как движение каждого электрона неравномерно. Сначала электрон движется замедленно (до точки остановки), а затем ускоренно возвращается обратно. Электроны, вылетевшие в моменты времени t1, t2 и t3, возвращаются в один и тот же момент, т. е. группируются в один плотный сгусток. Это же относится и к электронам, пролетающим через резонатор в промежуточные моменты времени от t1 до t3.

Электронный сгусток может вернуться в резонатор в различные моменты времени в зависимости от постоянных напряжений Up и U0. При возврате в резонатор электронные сгустки отдают ему энергию только тогда, когда они попадают в тормозящее поле, т. е. когда на сетке 1 отрицательный потенциал, а на сетке 2 — положительный (такое поле для прямого потока электронов будет ускоряющим). Больше всего энергии электроны отдают в том случае, если они возвращаются в момент, когда напряженность тормозящего поля в резонаторе максимальна. Когда же электронные сгустки возвращаются в резонатор в другие моменты времени, они отдают меньше энергии и мощность колебаний снижается. Если отдаваемая электронами энергия слишком мала, то колебания вообще не будут поддерживаться и затухнут. При возврате электронного сгустка в резонатор во время отрицательного полупериода колебаний, когда поле в резонаторе ускоряющее, электроны отбирают энергию от резонатора и колебания затухают еще быстрее.

Время пролета электронов в пространстве дрейфа tпр, т.е. промежуток времени от момента вылета электронов из резонатора в прямом направлении до момента их возврата в резонатор, принято указывать для среднего электрона (вылетевшего в момент t2), вокруг которого группируются остальные электроны. На рис. 25.3, б это время равно 13/4Т. Увеличив по абсолютному значению отрицательное напряжение на отражателе, можно заставить электронный сгусток возвращаться в резонатор в момент t4, т. е. через промежуток времени, равный 3/4Т. И наоборот, если уменьшить по абсолютному значению напряжение отражателя, то электроны пройдут дальше в тормозящее поле и вернутся в резонатор позднее, например через промежуток времени 23/4Т. Во всех этих случаях электронные сгустки отдают резонатору наибольшую энергию, так как они попадают в наиболее сильное тормозящее поле. Таким образом, для получения в клистроне незатухающих колебаний наибольшей мощнбсти необходимо выполнить условие

tпр = (п + 3/4) Т или tпр = (n + 3/4)/f, (25.1)

где п — любое целое число, включая нуль.

Различают несколько зон (или областей) генерации клистрона. Если п = 0 и tпр = 3/4Т, то зона генерации нулевая. При п = 1 и tпр =13/4Т клистрон работает в первой зоне генерации. Второй зоне соответствует п = 2 и tnp = 23/4Т и т. д. На рис. 25.4 показаны графики движения группирующихся электронов для первых трех зон генерации.

На время пролета электронов влияют следующие величины. Чем больше расстояние d между резонатором и отражателем, тем меньше напряженность тормозящего поля при одной и той же разности потенциалов Up — U0. Но при более слабом поле электроны слабее тормозятся, пройдут дальше в глубь поля и вернутся позднее. Следовательно, при большем значении d работа может происходить в зоне генерации с более высоким номером.

Движение электронов при работе отражательного клистрона в нулевой (а), первой (б) и второй (в) зоне генерации

Рис. 25.4. Движение электронов при работе отражательного клистрона в нулевой (а), первой (б) и второй (в) зоне генерации

 

Зависимость мощности колебаний клистрона от напряжения отражателя

Рис. 25.5. Зависимость мощности колебаний клистрона от напряжения отражателя

 

Сильное влияние на время пролета оказывает напряжение отражателя, что также показано на рис. 25.4. С увеличением U0 по абсолютному значению растет напряженность тормозящего поля Е = (UpU0)/d и клистрон будет работать в зоне генерации с более низким номером. Изменение мощности колебаний в резонаторе в зависимости от значения U0 показано на рис. 25.5. Мощность колебаний обычно бывает наибольшей для какой-то одной зоны, где группирование электронов оказывается наилучшим (плотным). Для зон генерации с меньшими и большими номерами мощность меньше вследствие явлений, ухудшающих группирование. К ним относятся: взаимное отталкивание электронов, неодинаковость их начальных скоростей, неоднородность поля в пространстве дрейфа и около сеток, а также ряд других причин.

Постоянное напряжение на резонаторе Up гораздо слабее влияет на время пролета. Его изменение оказывает два противоположных действия, которые в известной степени компенсируют друг друга. Если, например, увеличить напряжение Up, то скорость электронов возрастет и они должны глубже проникать в пространство дрейфа, т. е. время пролета должно увеличиться. Но при увеличении напряжения Up возрастает напряженность тормозящего поля в пространстве дрейфа, электроны сильнее тормозятся и должны быстрее вернуться, т. е. время пролета должно уменьшиться.

Переход к зоне генерации с более высоким номером путем уменьшения по абсолютному значению отрицательного напряжения на отражателе в конце концов приводит к тому, что при U0 > 0 электроны попадают на отражатель и не возвращаются в резонатор.

У отражательных клистронов КПД не превышает 5%, а иногда бывает даже меньше 1%. Поэтому такие клистроны не делают для мощностей более одного ватта. Наибольшее распространение получили маломощные отражательные клистроны для гетеродинов приемников и измерительной аппаратуры. Полезная мощность у них обычно составляет сотые или десятые доли ватта.

Изменение частоты колебаний, генерируемых отражательным клистроном, осуществляют разными способами. Емкостная перестройка состоит в том, что с помощью специальных механических приспособлений изменяют расстояние, а следовательно, и емкость между сетками резонатора. Такой способ обычно применяют для клистронов с внутренним резонатором. При этом возможна перестройка по частоте на 5 — 10%. Путем перемещения металлического плунжера внутри внешнего резонатора частоту можно увеличить на 20%. Одновременно с перестройкой собственной частоты резонатора следует также изменить и режим питания, например напряжение отражателя, чтобы получить наивыгоднейшие условия самовозбуждения.

В небольших пределах частоту можно изменить также изменением напряжения отражателя. Такой способ называют электронной настройкой. Если увеличить по абсолютному значению отрицательное напряжение отражателя, то электронные сгустки возвращаются в резонатор несколько быстрее и частота колебаний возрастает. А при уменьшении напряжения U0 по абсолютному значению электроны с запаздыванием возвращаются в резонатор и частота колебаний уменьшается. Можно привести следующую механическую аналогию электронной настройки. Пусть колебания маятника поддерживаются внешними толчками. Если эти толчки даются в моменты, когда маятник находится в крайнем положении, то частота колебаний равна собственной частоте маятника. Но можно подталкивать маятник несколько раньше, не давая ему дойти до амплитудного положения. В этом случае частота немного увеличится. Для уменьшения частоты надо давать толчки так, чтобы каждое колебание несколько затягивалось.

При изменении частоты колебаний методом электронной настройки полезная мощность уменьшается. Поэтому такую настройку принято ограничивать условием уменьшения полезной мощности не более чем на 50%. Обычно электронная настройка допускается на несколько десятков мегагерц в ту или другую сторону. На каждый вольт изменения напряжения отражателя получается изменение частоты на десятые доли процента рабочей частоты, т. е. на единицы мегагерц. В специальных клистронах электронной настройкой можно изменять частоту на 10—15%. Значительное влияние напряжения отражателя на выходную мощность и частоту генерируемых колебаний позволяет осуществлять амплитудную, частотную и импульсную модуляцию с помощью подачи на отражатель модулирующего напряжения.

Поскольку отражательные клистроны бывают только маломощными, то ускоряющее напряжение, подаваемое от источника питания, равно обычно 250 — 450 В и лишь в некоторых клистронах его увеличивают до 2500 В. Ток электронного пучка может достигать десятков миллиампер.

Сильное влияние питающих напряжений, особенно напряжения отражателя, на частоту заставляет во многих случаях применять стабилизированное питание клистрона.

 

 

 

Информация 2018

 

Продолжение

Магнетроны представляют собой важнейшие электронные приборы для генерации колебаний СВЧ большой мощности. Они применяются в передатчиках радиолокационных станций, в ускорителях заряженных частиц, для высокочастотного нагрева и в других случаях. В результате совместного действия электрического и магнитного полей на потоки электронов в магнетронах возникает генерация колебаний высокой частоты. В настоящее время широкое распространение получили многорезонаторные магнетроны, идея создания которых была выдвинута М. А. Бонч-Бруевичем, а первые образцы построены и испытаны Н. Ф. Алексеевым и Д. Е. Маляровым.

Устройство магнетрона показано на рис. 25.6. Он представляет собой диод с анодом особой конструкции. Катод в большинстве случаев применяется оксидный подогревный с большой площадью поверхности. На торцах катода расположены диски, препятствующие движению электронов вдоль оси. Анод сделан в виде массивного медного блока. Вакуумное пространство между катодом и анодом называется пространством взаимодействия. В толще анода размещается четное число, например восемь, резонаторов, представляющих собой цилиндрические отверстия, соединенные щелью с пространством взаимодействия. Щель выполняет функцию конденсатора. На ее поверхностях образуются переменные электрические заряды, а в самой щели возникает электрическое поле. Индуктивностью резонатора служит цилиндрическая поверхность отверстия, которая эквивалентна одному витку. Большая площадь поверхности витка приводит к уменьшению активного сопротивления и индуктивности. Такой резонатор представляет собой нечто среднее между колебательной системой с сосредоточенными параметрами и четвертьволновой резонансной линией. В некоторых типах магнетронов резонаторы делают в виде щели глубиной в четверть волны (рис. 25.7).

Все резонаторы магнетрона сильно связаны друг с другом, вследствие того что переменный магнитный поток одного резонатора замыкается через соседние резонаторы (рис. 25.8). Кроме того, резонаторы соединяют друг с другом посредством проводов, называемых связками (см. рис. 25.6).

Наружная часть анода обычно делается в виде ребристого радиатора для лучшего охлаждения. Иногда его обдувают воздухом. С боковых сторон к аноду припаяны медные диски, образующие вместе с анодом баллон, необходимый для сохранения вакуума. Выводы от подогревателя проходят в стеклянных трубках, спаянных с анодом. Катод обычно подключен к одному из выводов подогревателя.

Для отбора энергии колебаний вводится в один из резонаторов виток связи, соединенный с коаксиальной линией. Ее вывод также проходит через стеклянную трубку. Благодаря сильной связи между резонаторами энергия отбирается от всех резонаторов. Вместо коаксиальной линии для вывода энергии на очень коротких волнах используется волновод, соединенный с резонатором через щель. Иногда также применяют коаксиально-волноводный вывод.

Анод магнетрона имеет высокий положительный потенциал относительно катода. Так как анод служит корпусом магнетрона, то его обычно заземляют, а катод находится под высоким отрицательным потенциалом. Между анодом и катодом создается ускоряющее поле, силовые линии которого расположены радиально, как в диоде с цилиндрическими электродами. Вдоль оси магнетрона действует сильное постоянное магнитное поле, созданное магнитом, между полюсами которого располагается магнетрон. Один из вариантов магнитной системы показан на рис. 25.9. В так называемых пакетированных магнетронах постоянные магниты входят в конструкцию самого магнетрона.

 
 
Сайт создан в системе