Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Лампы бегущей и обратной волны

Недостатки, свойственные усилительному клистрону, в значительной степени устраняются в лампе бегущей волны (ЛБВ) и лампе обратной волны (ЛОВ).

Усиление и КПД в ЛБВ могут быть значительно выше, чем в клистроне. Это объясняется тем, что электронный поток в ЛБВ взаимодействует с переменным электрическим полем на большом участке пути и отдает значительную часть энергии на усиление колебаний. Электронный поток в ЛБВ гораздо слабее чем в клистроне, и поэтому уровень шумов сравнительно невелик. Полоса пропускаемых частот может быть широкой, так как в самой ЛБВ нет колебательных систем. Коэффициент перекрытия по частоте составляет 2 — 4. Ширина полосы ограничивается не лампой, а дополнительными устройствами, служащими для связи лампы с внешними цепями. Лампы для частот в тысячи мегагерц имеют полосу в сотни мегагерц, что вполне достаточно для радиолокации и всех видов современной радиосвязи.

Устройство ЛБВ О-типа показано схематически на рис. 25.15. В левой части удлиненного баллона помещен электронный прожектор с подогревным катодом К, фокусирующим электродом ФЭ и анодом А. Электронный луч, созданный прожектором, проходит далее внутри замедляющей системы (например, в виде проволочной спирали), выполняющей роль внутреннего провода коаксиальной линии. Наружным проводом служит металлическая трубка Т. Спираль укреплена на специальных изоляторах (для упрощения они не показаны). Фокусирующая катушка ФК, питаемая постоянным током, служит для сжатия электронного луча по всей его длине, чтобы предотвратить увеличение поперечных размеров луча из-за взаимного отталкивания электронов. Вместо катушки для фокусировки могут быть применены также постоянные магниты. Так как магнитные фокусирующие системы громоздки, то в последнее время разработаны электростатические способы фокусировки электронного луча в ЛБВ, т. е. фокусировка электрическим полем.

Усиливаемые колебания подводят к ЛБВ с помощью входного волновода В1 в котором помещен приемный штырек Ш1 представляющий собой начало спирали. На конце спирали имеется штырек Ш2, возбуждающий колебания в выходном волноводе В2. Плунжеры П1 и П2 служат для согласования волноводов со спиралью, т. е. для того, чтобы вдоль спирали распространялась бегущая волна. Электронный луч, пройдя сквозь спираль, попадает на коллектор К´. Спираль электрически соединена с коллектором. В ЛБВ для частот до 4000 МГц связь спирали с внешними цепями осуществляют посредством коаксиальных линий, так как волноводы для этих частот слишком громоздки.

Спираль конструируется обычно так, что фазовая скорость волны вдоль оси спирали υф ≈ 0,1с = 0,1 · 300 000 = 30 000 км/с. Обычно в спирали десятки или сотни витков. Для сантиметровых волн длина спирали может быть 10—30 см, а ее диаметр несколько миллиметров.

Принцип устройства ЛБВ О-типа

Рис. 25.15. Принцип устройства ЛБВ О-типа

 

Электрическое поле бегущей волны внутри спирали

Рис. 25.16. Электрическое поле бегущей волны внутри спирали

 

На рис. 25.16 показана картина электрического поля внутри спирали для случая, когда длина волны соответствует шести виткам. Сама спираль изображена в разрезе. Знаками «плюс» и «минус» показано распределение потенциалов на проводе спирали, причем жирные знаки соответствуют более высокому потенциалу. Изображено поле в какой-то определенный момент времени. Так как волна бежит по спирали, то поле вращается вокруг ее оси и перемещается вдоль этой оси со скоростью υф. Существует, конечно, еще электрическое поле между спиралью и внешней металлической трубкой, не показанное на рисунке, но оно не взаимодействует с электронным лучом. Вокруг витков спирали есть также переменное магнитное поле, но между ним и электронами также нет энергетического взаимодействия.

Скорость электронов, попадающих в спираль, должна быть немного больше υф, т.е. она тоже примерно 0,1с. Это достигается тем, что напряжение анода устанавливается несколько большим 2500 В. В результате взаимодействия электронного луча с электрическим полем бегущей волны происходит модуляция электронов по скорости и группирование их в сгустки. Иначе говоря, плотность луча становится неравномерной и в нем появляются участки большей плотности, отделенные друг от друга разреженными участками.

Рассматривая рис. 25.16, нетрудно заметить, что участок АБ спирали (на протяжении одной полуволны) создает для электронов тормозящее поле, а участок БВ (на протяжении другой полуволны) — ускоряющее поле. Вдоль спирали чередуются участки ускоряющего и тормозящего поля. Если в начале спирали в данный момент времени оказывается участок тормозящего поля, то электроны в нем тормозятся и далее продолжают двигаться в пределах того же участка к концу спирали, группируясь в более плотные сгустки. Постепенно уменьшая скорость, они все время отдают энергию полю, усиливая бегущую волну. Если же электроны в начале спирали влетают в участок ускоряющего поля, то они увеличивают свою скорость и, обгоняя поле, постепенно переходят в следующий участок, где поле тормозящее. Хотя эти электроны, попав сначала в ускоряющее поле, отнимут от бегущей волны некоторую энергию, далее они возвращают ее волне, так как переходят на участок тормозящего поля.

Таким образом, на участках тормозящего поля образуются электронные сгустки, отдающие все время энергию волне. Поэтому на протяжении всей спирали электроны отдают бегущей волне значительную энергию. Амплитуды тока и напряжения бегущей волны по мере ее перемещения к концу спирали увеличиваются. При этом усиливается ускоряющее и тормозящее поле волны, а значит, и эффект группирования электронов. Но тогда увеличивается и отдача энергии электронами. В результате такого постепенно усиливающегося процесса на выходе получаются значительно усиленные колебания. Энергию, отдаваемую бегущей волне, сами электроны получают от источника анодного питания.

При большом усилении и неполном согласовании спирали с волноводами появляется волна, отраженная от выходного конца спирали. Дойдя до входного конца, такая волна снова отражается, усиливается, затем опять отражается от выходного конца и т. д. В результате возникает самовозбуждение, т.е. ЛБВ начинает генерировать собственные колебания, что недопустимо при усилении. Для устранения этого явления часть спирали в начале или середине делают из провода высокого сопротивления, чтобы поглотить энергию отраженной волны. Часто для поглощения поверхность баллона или изоляторы, поддерживающие спираль, покрывают слоем графита.

В ЛБВ для наиболее коротких сантиметровых волн спираль заменяют замедляющими волноводными системами различного типа, так как трудно изготовить спираль очень малых размеров. Подобные замедляющие системы применяются также в мощных ЛБВ, так как спираль не может выдержать рассеяния в ней большой мощности. ЛБВ со спиральной замедляющей системой делают на выходные мощности до 1 кВт и частоты до 10 ГГц.

В настоящее время разработано много различных ЛБВ, применяемых в качестве входных, промежуточных и выходных широкополосных усилителей. Наличие гармоник в токе пучка позволяет использовать ЛБВ в умножителях частоты.

По выходной мощности ЛБВ различаются следующим образом. Малошумящие ЛБВ, в которых ток пучка составляет 100 — 200 мкА, имеют выходную мощность в тысячные или сотые доли ватта. В специальных приемных устройствах добиваются особенно малого уровня шумов, охлаждая ЛБВ до весьма низкой температуры. ЛБВ малой мощности (до 2 Вт) имеют ток пучка в единицы или десятки миллиампер. Коэффициент усиления у них достигает сотен тысяч. При средней (до 100 Вт) и большой (до 100 кВт) мощности усиление получается меньше тысячи, а ток пучка — от сотен миллиампер до единиц ампер. У сверхмощных ЛБВ полезная мощность составляет сотни киловатт. Напряжение питания — от сотен вольт для маломощных ЛБВ до десятков киловольт и выше — для мощных. КПД у мощных ЛБВ может быть до 40%. Многие ЛБВ используются в импульсном режиме и могут дать мощность в импульсе 10 МВт и более.

Для повышения КПД в ЛБВ применяют торможение электронов после замедляющей системы. Это достигается тем, что на коллектор подают меньшее постоянное напряжение, чем на замедляющую систему. Тогда уменьшается мощность, потребляемая от источника питания. Также для повышения КПД применяют группирование по принципу клистронного. Такие ЛБВ называются твистронами. В них клистронная система создает электронные сгустки, которые далее попадают в систему, аналогичную ЛБВ. Именно в этой последней получается усиленная выходная мощность. У твистронов КПД доходит до 50%, а ширина относительной полосы частот может быть до 15%. Выходная мощность в импульсном режиме у некоторых твистронов составляет десятки мегаватт.

Принцип устройства усилительной (а) и генераторной (б) ЛОВ О-типа

Рис. 25.17. Принцип устройства усилительной (а) и генераторной (б) ЛОВ О-типа

 

Принцип работы ЛБВ послужил основой для создания ламп обратной волны (ЛОВ), которые называли также карсинотронами. Эти лампы в отличие от ЛБВ используются главным образом для генерации колебаний, но могут работать и в усилительном режиме. В ЛОВ применяются такие же системы фокусировки и замедляющие системы, как в ЛБВ, но волна и электронный поток движутся навстречу друг другу. На рис. 25.17, а показана схематически (без фокусирующей системы) усилительная ЛОВ О-типа. Она имеет вход около коллектора и выход около катода. Несмотря на то что в подобной ЛОВ нет резонансных систем, она обладает резонансными свойствами. Усиление в такой лампе получается лишь в узкой полосе частот, причем положение этой полосы в диапазоне частот зависит от ускоряющего постоянного напряжения U. Изменяя его, можно осуществить электронную перестройку. Значительно более широко применяются генераторные ЛОВ О-типа (рис. 25.17, б). В них около коллектора расположено не входное, а поглощающее устройство (затушевано), которое поглощает волну, отраженную от выходного конца замедляющей системы. Такая волна может появиться при неполном согласовании на выходе и ухудшает работу ЛОВ.

Первоначальные слабые колебания в генераторной ЛОВ возникают от флюктуации электронного потока, затем эти колебания усиливаются и начинается генерация. Следует заметить, что генерация может возникнуть и в усилительной ЛОВ, если ток пучка в ней превысит некоторое критическое значение. Частота колебаний, генерируемых ЛОВ, зависит от ускоряющего напряжения U. Поэтому возможна электронная перестройка частоты с коэффициентом перекрытия до 2. В генераторных ЛОВ сантиметрового диапазона изменение частоты при перестройке составляет единицы мегагерц на один вольт ускоряющего напряжения. Выходная мощность генераторных ЛОВ бывает от десятков милливатт до единиц ватт, а КПД — несколько процентов. Ускоряющее напряжение — сотни или тысячи вольт, а ток пучка — от единиц до десятков миллиампер.

Разновидность генераторных ЛОВ — так называемые резонансные ЛОВ, в которых отсутствует поглотитель, а замедляющая система замкнута накоротко около коллектора и поэтому становится резонатором. В таких ЛОВ возможна не только электронная, но и механическая перестройка частоты. Резонансные ЛОВ обладают более высокой стабильностью частоты и более высоким КПД.

Рассмотренные выше магнетроны дают большую выходную мощность и обладают высоким КПД. Недостатки их — узкополосность, а также невозможность электронной перестройки частоты и усиления. А ЛБВ и ЛОВ О-типа, наоборот, широкополосны, в них возможна электронная перестройка частоты и усиление колебаний, но зато они имеют сравнительно малый КПД и во многих случаях небольшую выходную мощность. Поэтому были разработаны приборы, сочетающие в себе достоинства магнетронов и ламп бегущей или обратной волны.

Широкое применение получили ЛБВ и ЛОВ М-типа (ЛБВМ и ЛОВМ). На рис. 25.18 изображена схематически ЛБВМ плоской конструкции. Электроны, эмитированные накаленным катодом К, попадают в постоянное электрическое поле напряженностью Еу, созданное напряжением управляющего электрода УЭ, и в постоянное магнитное поле с индукцией В, созданное внешней магнитной системой, не показанной на чертеже. Под действием этих двух полей электронный поток искривляет траекторию и движется к коллектору К´ в пространстве взаимодействия между замедляющей системой ЗС и «холодным» катодом ХК. Как видно, у ЛБВМ «холодный» катод находится в том месте, где в магнетронах расположен накаленный катод. Замедляющая система находится под постоянным положительным потенциалом относительно этого катода. Поэтому на электронный поток действует поперечное постоянное электрическое поле напряженностью Е и постоянное магнитное поле с индукцией В. Двигаясь в этих скрещенных полях, электронный поток передает часть энергии электромагнитной волне, распространяющейся от входа к выходу, т.е. происходит усиление. Для устранения возможности самовозбуждения в замедляющей системе находится поглотитель П.

Принцип устройства плоской ЛБВ М-типа

Рис. 25.18. Принцип устройства плоской ЛБВ М-типа

 

Коэффициент полезного действия ЛБВМ при большом входном сигнале может быть 50 — 70%, а коэффициент усиления доходит до сотен. В непрерывном режиме работы ЛБВМ имеет выходную мощность до нескольких киловатт, а у импульсных ЛБВМ она может составлять несколько мегаватт. В настоящее время ЛБВМ используются главным образом как мощные выходные усилители. Вариант устройства ЛБВМ цилиндрической конструкции показан схематически на рис. 25.19. На нем сохранены обозначения, бывшие на рис. 25.18.

Аналогично ЛБВМ устроены ЛОВМ, которые могут быть усилительными или генераторными. В этих лампах выход расположен вблизи накаленного катода. Электронный поток взаимодействует с волной, распространяющейся ему навстречу. Усилительные ЛОВМ имеют вход и выход, а в генераторных ЛОВМ имеется только выход и около коллектора помещен поглотитель. Выходная мощность генераторных ЛОВМ при непрерывной работе достигает нескольких десятков киловатт в дециметровом диапазоне и сотен ватт — в сантиметровом; КПД составляет 50 — 60%. Возможна электронная перестройка частоты путем изменения ускоряющего напряжения U.

 

 

 

Информация 2018

 

Продолжение

Представители приборов М-типа, сочетающие в известной степени принципы работы магнетрона и ЛОВМ,— амплитрон и карматрон. В отличие от ЛОВМ они имеют такой же накаленный цилиндрический катод, как и магнетрон.

Усилительный прибор амплитрон показан схематически на рис. 25.20. Он имеет замедляющую систему в виде цепочки резонаторов, но в отличие от магнетрона эта цепочка разомкнута и в анодном блоке образованы вход и выход. Чтобы устранить возможность самовозбуждения колебаний π-вида (как в магнетроне), в амплитроне делают обычно нечетное число резонаторов. Так же, как и в магнетроне, возникает замкнутое вращающееся электронное «облачко», которое взаимодействует с движущейся навстречу электромагнитной волной. При передаче энергии электронов этой волне происходит усиление колебаний.

Амплитроны применяются в качестве усилителей сравнительно мощных сигналов; КПД амплитронов не менее 55%, а в мощных и сверхмощных приборах достигает 85%. В непрерывном режиме амплитроны дают выходную мощность до 500 кВт, а в импульсном — 10 МВт и даже больше. Коэффициент усиления — десятки. Относительная ширина полосы частот 5 — 10%. Анодное напряжение — единицы или десятки киловольт, а ток анода — десятки ампер.

Карматрон — прибор, предназначенный для генерации колебаний. Он имеет такое же устройство, как и амплитрон, но вместо входа — согласованную нагрузку. Выходная мощность и КПД такие же, как у амплитронов.

Для генерации более стабильных по частоте колебаний используют амплитрон в сочетании с высокодобротным внешним резонатором, включенным на вход амплитрона, и некоторыми дополнительными приборами. Получающееся при этом более сложное устройство названо стабилотроном. В нем генерируются колебания с высокой стабильностью частоты, причем возможна перестройка частоты примерно на 10%.

Мы познакомились с важнейшими типами электронных приборов СВЧ. Кроме них разработаны многие другие приборы, имеющие пока не такое широкое применение.

 
 
Сайт создан в системе