Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Ограничения по выбору рабочей точки

Принципиальная схема простейшего резисторного каскада.

Рассмотренный выше усилитель не только искажал усиливаемые колебания, но на его выход кроме полезного переменного колебания было приложено постоянное анодное напряжение. Для блокирования постоянного тока в нагрузочной цепи, выходные клеммы подключают к аноду лампы через разделительный конденсатор. Выше также говорилось о том, что для исключения значительных искажений усиливаемого сигнала, на сетку необходимо подать некоторое напряжение смещения. Таким образом, схему усилителя нужно несколько усложнить (рис. 3.4).

Резисторный усилитель с аккумулятором в цепи смещения

Рис. 3.4 Резисторный усилитель с аккумулятором в цепи смещения

Здесь следует обязательно обратить внимание на то, что присутствующий в этой и последующих схемах резистор, включенный параллельно выходным клеммам каскада, не что иное — как эквивалентный значок нагрузки, сопротивление которого равно входному сопротивления следующего каскада усиления, либо громкоговорителя (головного телефона)! В реальных каскадах этого резистора нет! Аналогично, в реальных каскадах отсутствует и резистор, включенный на рис. 3.4 последовательно с генератором входного напряжения. Этот значок символизирует выходное сопротивление предыдущего каскада усиления, либо источника входного сигнала.

Итак, на сетку электронной лампы подано напряжение смещения от аккумулятора через резистор Rg, который предотвращает аккумулятор коротко! замыкание источника сигнала (генератора переменного тока) через аккумулятор, поскольку сопротивление аккумулятора переменному току близко к нулю. Cg — разделительный конденсатор, который предотвращает короткое замыкание аккумулятора через генератор, rs внутренне (выходное) сопротивление генератора.

Возвращаясь к выходным статическим характеристикам лампы и нагрузочной линии, обратим внимание, что при сильном увеличении Va, статические характеристик, соответствующие разным сеточным напряжениям становятся существенно нелинейными. Нелинейность становится особенно большой, когда Va приближается к напряжению ВН. Эта область называется областью отсечки (поскольку при приближении Va к ВН анодный ток прекращается — отсекается). При построении линейных усилителей, работа близко к области отсечки не рекомендуется, хотя позже будет рассмотрен и режим работы с отсечкой тока, применительно к некоторым разновидностям каскадов усиления мощности.

Перемещаясь вдоль нагрузочной линии в противоположном направлении, мы открываем электронную лампу больше и больше (увеличивая анодный ток и уменьшая падение напряжения на лампе), до тех пор, пока на ней не исчезнет падение напряжения. При этом нельзя не обратить внимание на еще один важный момент. Когда потенциал сетки становится положительным, часть электронов, оторвавшихся от катода, больше не отталкиваются сеткой, а притягиваются к ней, вызывая сеточный ток. Это уменьшает входное сопротивление электронной лампы, которое при отсутствии сеточного тока стремится к бесконечно большому (поскольку сопротивление входной емкости сетка-катод на звуковых частотах очень велико), и генератор с ненулевым выходным сопротивлением начинает нагружаться (то есть часть входного напряжения начинает падать на внутреннем сопротивлении его источника). При этом ослабляются положительные полуволны входного сигнала, что вызывает искажения входного сигнала, даже если электронная лампа работает в линейном режиме. Точное значение сеточного напряжения, при котором появляется сеточный ток, варьирует у разных типов электронных ламп (обычно около 1 В) и обычно обозначается в спецификациях электронной лампы. Для уверенности в полном отсутствии сеточного тока, полезно выбирать напряжение смещения таким образом, чтобы максимальное напряжение на сетке (при воздействии на нее усиливаемого колебания) не превышала — 1 В.

Если к электронной лампе приложено напряжение и через нее протекает ток, то на ней будет рассеиваться мощность, вызывая разогрев анода. Имеется предельно-допустимая мощность, превышение которой вызывает расплавление внутренних элементов конструкции электронной лампы. Она называется максимальная мощность рассеяния на аноде и приводится в спецификации лампы, для ЕСС83 она равна 1 Вт. Для мощных электронных ламп кривая, соответствующая предельной мощности часто начерчена на анодных характеристиках, но, при желании, можно легко построить ее самим. Все, что необходимо для этого сделать — это подсчитать ток, необходимый для достижения предельной мощности для разных значений анодного напряжения. Построим эти результаты на графике, начертив кривую через рассчитанные точки, образующую гиперболу.

Спецификация электронной лампы также определяет еще два взаимосвязанных ограничения по выбору точки смещения, это предельно-допустимые напряжения на аноде. Здесь могут нормироваться две величины — максимально-допустимое постоянное питающее напряжение, а также максимальное мгновенное напряжение на аноде в режиме усиления сигнала. Игнорирование этих пределов обычно вызывает быстрое разрушение электронной лампы, сопровождаемое голубыми вспышками и хлопками, так как остаточный газ в электронной лампе ионизируется и разрушает ее. Само по себе наличие повышенного напряжения между анодом и катодом может и не вызывать необратимого повреждения, но если при этом через лампу течет большой анодный ток, то она может быть разрушена! Вас предупредили!

Последнее ограничение — максимально допустимый ток катода Ia(max). Обычно сначала вступает в действие одно из других ограничений, но иногда входные каскады могут работать при минимальных Va и максимальных Iа, чтобы максимизировать крутизну лампы и минимизировать шум. В этом случае обязательно нужно сделать проверку по предельному току, если такие данные приведены в спецификации лампы.

Теперь можно начертить эти ограничения на анодных характеристиках и выбрать рабочую точку в «чистой» области (рис. 3.5).

Ограничения на выбор рабочей области

Рис. 3.5 Ограничения на выбор рабочей области

 

 

 

Информация 2018

 

Продолжение

Хотя выбор рабочей точки теперь значительно ограничен, по-прежнему можно рассуждать об оптимизации различных показателей усилителя путем того или иного ее выбора.

Как правило при выборе рабочей точки, имеются два основных (и обычно противоречивых) фактора: максимальное использование лампы по напряжению и линейность. Если, например, выбирать смещение для достижения максимального размаха анодного напряжения, то установим постоянное напряжение на аноде Va = 225 В, чтобы добиться изменения анодного напряжения в пределах от 300 В до 150 В. Это будет выполняться при подаче на сетку напряжения смещения —2,1 В.

Однако, когда речь идет о разработке усилителя с повышенным качеством, на первом месте оказывается требование к линейности его характеристики, а максимальное использование по напряжению отходит на второй план. У ламп-триодов, среди всех нелинейных продуктов преобладает вторая гармоника. Основной причиной искажений является неодинаковость усиления на положительном и отрицательном полупериодах усиливаемого колебания. Этот эффект напрямую связан с нелинейностью статических характеристик лампы и проявляется тем сильнее, чем больше амплитуда сигнала. Чтобы максимизировать линейность, поместим рабочую точку в область, где по нагрузочной прямой (по возможности наименьшие) в обе стороны от характеристики соответствующей напряжению смещения равны. В этом случае потребуется подвести положительное напряжение на анод 182 В, одновременно прикладывая — 1,5 В на сетку.

Предположим, что мы выбрали линейный подход, и теперь нужно определить динамический режим или режим переменного каскада по переменному току, чтобы проверить, соответствует ли он нашим потребностям.

Первый, и наиболее очевидный, определяемый параметр — коэффициент усиления по напряжению (Av) или просто коэффициент усиления каскада. Его легко вычислить, по нагрузочной прямой, найдя ее точки пересечения с двумя статическими характеристиками, расположенными на равном расстоянии влево и вправо от характеристики, соответствующей напряжению смещения. Необходимо найти анодные напряжения, соответствующие этим двум точкам пересечения, а также записать каким сеточным напряжениям соответствуют эти две статические характеристики. Мы сделаем это, найдя равные расстояния по обе стороны от рабочей точки с первым пересечением сеточной кривой, отметив анодное напряжение. Согласно рис. 3.3, если двигаться по нагрузочной прямой от рабочей точки вправо, встретится пересечение с характеристикой, снятой при сеточном напряжении —2 В, при анодном напряжении 220 В. Подобным образом при движении влево от рабочей точки, кривая, соответствующая сеточному напряжению —1В пересекается с нагрузочной линией при 148 В на аноде.

 
 
Сайт создан в системе