Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях
 
 

Цифровая обработка сигналов

Общие сведения о цифровом представлении сигналов и аналого-цифровом преобразовании

Аналоговый сигнал является непрерывно изменяющимся во времени процессом, причем величина его напряжения или тока может плавно изменяться, принимая любые промежуточные значения в интервале от минимального до максимального. В отличие от аналогового, цифровой сигнал несет информацию о величине (напряжении, токе) исходного сообщения лишь в фиксированные моменты времени, а сами его значения также могут принимать только строго фиксированные дискретные значения, которые обычно представляются в виде двоичных чисел. В качестве некоторой наглядной модели, можно обратиться к процессу измерения какой-либо зависимости. Построение графика по нескольким точкам измерений — грубая модель аналогово-цифрового преобразования, поскольку отдельные измерения являются фиксированными значениями. Представление аналоговых сигналов в цифровом виде (аналого-цифровое преобразование), когда фиксированные значения исходного сигнала, взятые через определенные промежутки времени, представляются в виде двоичных чисел очень удобно, поскольку позволяет применить к такому сигналу математическую обработку силами современной вычислительной техники, оперирующей как раз двоичными числами.

Аналогово-цифровое преобразование (АЦП) является сложным процессом, состоящим из двух частей. Первая процедура — фиксация процесса через определенные промежутки времени, называемая дискретизацией. Вторая процедура — приведение значения зафиксированного параметра к одному из разрешенных дискретных уровней, называемая квантованием. На практике существуют различные алгоритмы этих процедур, проводимых в той или иной последовательности. После преобразования, дискретные значения заменяются определенным двоичным числом (в зависимости от конкретного значения дискретного уровня). Этот процесс называется кодированием.

Процесс аналого-цифрового преобразования также часто называют импульсно-кодовой модуляцией (ИКМ или PCM — Pulse Code Modulation).

Дискретизация. Теорема Котельникова - Найквиста

Процесс фиксации параметров исходного аналогового сигнала (подвергаемого АЦП) через определенные равные интервалы времени называется дискретизацией. На

практике очень важно знать, какова требуется частота повторения выборки (фиксации параметров). Эта частота называется частотой дискретизации. Например, если делать 96000 выборок в секунду, то частота дискретизации равняется 96 тыс. Выборок/с или 96 кГц. Для того, чтобы непрерывный аналоговый сигнал заменить последовательностью его отдельных значений (отсчетов), взятых (зафиксированных) через определенные равные промежутки времени, без потери полезной информации, необходимо выполнить требования теоремы Котельникова — Найквиста. Эта теорема гласит, что для безошибочного восстановления аналогового сигнала из его дискретных отсчетов, частота дискретизации должна быть как минимум вдвое больше верхней (наибольшей) частоты исходного аналогового сигнала. Таким образом, на любой из частот исходного сигнала, выборка отсчета должна производиться не менее, чем дважды за период. Работа всех устройств, использующих цифровое представление аналоговых сигналов (например, проигрывателей компакт-дисков) базируется на этой фундаментальной теореме.

Если условия теоремы Котельникова — Найквиста не будут выполнены, аналоговый сигнал не сможет быть точно восстановлен из цифрового. В итоге, аудиосигнал, поступающий в громкоговоритель, окажется обогащенным новыми спектральными составляющими, являющимися продуктом специфических нелинейных искажений.

Нарушение критерия Найквиста порождает побочные низкочастотные составляющие, которых не было в первоначальном сигнале. Чтобы предотвратить появление этих дополнительных спектральных составляющих, перед аналогово-цифровым преобразователем нужно устанавливать фильтр нижних частот, задерживающий все составляющие исходного сигнала с частотами вдвое ниже частоты дискретизации (обычно с небольшим запасом) и более высокими. Например, компьютерная звуковая карта, работающая на частоте дискретизации 44,1 кГц должна быть укомплектована фильтром нижних частот, обладающим частотой среза ≈ 20 кГц. Таким образом, если использовать компьютерную звуковую карту для измерения нелинейных искажений, нужно подавлять все частоты аудиосигнала выше 20 кГц. Если же требуется точно воспроизвести сигналы, содержащие спектральные составляющие на более высоких частотах, требуется более высокая частота дискретизации. В тоже время, работаю с цифровыми осциллографами, применение подобных фильтров нежелательно, поскольку их частота дискретизации в процессе измерения меняется в широком диапазоне. В тоже время, всегда можно установить а таком осциллографе заведомо высокую частоту дискретизации, что снимает проблему.

Масштабирование, квантование, кодирование

При построении графика на разграфленной бумаге важно правильно выбрать масштаб, который удобен для построения. Например, если миллиметровая бумага имеет десять крупных квадратов, каждый из которых состоит из десяти маленьких квадратов, а измеряемый ток находится в диапазоне от 0 до 8 мА, то нужно установить масштаб одного большого квадрата = 1 мА. Это может показаться очевидным, но что будет, если мы выберем масштаб одного большого квадрата = 0,1 мА или 10 мА?

В первом случае, наши данные выйдут за пределы миллиметровой бумаги, а во втором случае график будет трудно разглядеть. Назначение масштабирования — привести в соответствие диапазон параметра диапазону системы измерения.

Подобным образом, когда преобразуют аналоговый сигнал в цифровой, то сначала определяют масштаб фиксируемого параметра (тока, напряжения), а затем осуществляют процедуру квантования. Кстати — именно по этой причине, в большинстве цифровых вольтметров указывается их базовая погрешность в диапазоне 0—5 В. Их система измерения фактически измеряет только в диапазоне от 0 до 5 В, а переключатель диапазонов лишь переключает аттенюаторы или усилители, чтобы привести масштаб внешнего напряжения или тока к этому основному диапазону. В практических задачах это означает, что масштабирование не может быть точным, следовательно оно увеличивает ошибки во всех диапазонах.

Как уже говорилось выше, квантованием называют процесс приведения уровней дискретных отсчетов к фиксированным значениям. При этом, произвольное значение отсчета сравнивается с набором фиксированных уровней квантования, а затем заменяется на ближайшее из них. Величина напряжения (тока) исходного аналогового сигала может принимать теоретически бесконечное количество произвольных значений (в пределах динамического диапазона сигнала), таким образом, уровень дискретного отсчета после квантования неточно соответствует произвольному значению отсчета исходного аналогового сигнала. Эту погрешность принято называть шумами квантования. Чем больше набор допустимых дискретных уровней квантования, тем меньше будут шумы квантования. На практике, при обработке аудиосигналов часто применяется 256 уровней квантования и более.

После квантования следует процесс кодирования. При этом, в зависимости от дискретного уровня квантования, квантованный отсчет заменяется двоичным числом, иначе называемом цифровым словом которое является кодом исходного аналогового сигнала в фиксированный момент времени. Таким образом, цифровой сигнал представляет собой последовательность цифровых слов, записываемых через равные интервалы в цифровую память.

Системы счисления и кодовые слова

Сегодня практически всем известно, что в современной цифровой и вычислительной технике используется двоичная система счисления, оперирующая знаками (0, 1), а не в привычная десятичная (0—9) система, используемая человеком. Это может показаться довольно ограниченным, потому что означает, что человек привык вести счет в каждом разряде считать до девяти, в то время, как компьютер считает только до одного. Решением в обоих случаях является масштабирование системы счета. Каждый раз при достижении 9 для добавления 1, мы записываем в число новый разряд, как масштабированную единицу, но это неудобный термин, поэтому мы называем его «десять». Нет причин по которым было бы нельзя масштабировать десятки: «сотни, десятки, и единицы», — как учат в начальной школе. Масштабирование показано более формально в табл. 4.1.

Таблица 4.1
тысячи сотни десятки единицы десятые сотые тысячные
1000 100 10 1 1/10 1/100 1/1000
103 102 101 100 10-1 10-2 10-3

Термины «сотни, десятые», и т. п. являются просто степенью основания системы, в этом случае 10. Двоичная система счисления строится точно так же, но так как в ней вместо основания «10» используется основание «2», ее масштабная таблица выглядит иначе (см. табл. 4.2).

Таблица 4.2
32 16 8 4 2 1 1/2 1/4 1/8 1/16 1/32
25 24 23 22 21 20 2-1 2-2 2-3 2-4 2-5

Таким образом, несмотря на то, что в двоичной системе используется только 0 и 1, с помощью комбинаций многоразрядных чисел (кодовых слов), содержащих только эти символы, можно выразить любое десятичное число. В цифровой и вычислительной технике, каждый разряд кодового слова принято называть битом информации. Таким, образом, если двоичное число (кодовое слово) состоит из четырех разрядов, то говорят, что оно содержит четыре бита информации, или является четырехбитным.

При аналого-цифровом преобразовании, разрядность цифрового кода (то есть число бит в кодовых словах) напрямую зависит от числа уровней квантования. Чаще всего, разрядность кодовых слов берется кратным восьми. Используются 8-битовые, 16-битовые, 24-битовые, 32-битовые и т. п. кодовые слова. В цифровой и вычислительной технике 8 бит информации называют одним байтом. Поскольку, для каждого бита информации возможно два состояния — 1 и 0, нетрудно подсчитать, какое количество дискретных квантованных уровней сигнала может быть описано однобайтным, двухбайтным и т. п. Итак, общее число различных уровней, которые могут быть описаны 8-разрядным (восьмибитным или однобайтным) кодовым словом, равно 28 = 256, а 16-разрядным словом, — 216 = 65536. Подобным образом, 24-битная система допускает 224 = 16 777216 различных уровней, но требуется в полтора раза больше памяти для сохранения каждого слова (24/16 = 1S), чем в 16-битной.

Как правило (игнорируя вспомогательные добавочные псевдослучайные сигналы, необходимые, как для повышения помехозащищенности, так и для других целей), динамический диапазон (ДД) цифровой системы определяется следующим образом:

где п = количество бит.

Таким образом, теоретический динамический диапазон 16-разрядной системы равен 6 х 16 = 96 дБ.

Говоря о цифровой технике, всегда важно помнить, что с увеличением числа уровней квантования, а также с повышением частоты дискретизации, точность цифровогопредставления сигнала возрастает, но при этом требуются существенно большие ресурсы цифровой системы (быстродействие, память), поскольку неизбежно растет разрядность кодовых слов.

Быстрое преобразование Фурье (БПФ)

Уже неоднократно обсуждалось, что любой процесс можно представить двояко — во временной или в частотной области. На экране осциллографа мы видим графическую зависимость уровня исследуемого процесса от времени — это есть временное представление. На экране анализатора спектра, мы видим зависимость уровня того же процесса от частоты — это есть частотное представление.

При оценке нелинейных искажений очень полезно иметь спектр исследуемого сигнала, однако, как уже говорилось выше, анализатор спектра прибор дорогой и сложный. Однако, при помощи звуковой карты и несложного программного обеспечения, в анализатор спектра (конечно, далеко не самый хороший, но вполне приемлемый) нетрудно превратить обычный персональный компьютер. Основное преимущество цифрового представления сигналов, — это возможность применения для их обработки сложных математических алгоритмов. Аналитическая взаимосвязь между временным и частотным представлением процессов была установлена выдающимся математиком Фурье, и такое преобразование носит его имя.

Вычислительный алгоритм, лежащий в основе работы программных средств по обработке оцифрованных звуковых сигналов, осуществляющий их преобразование из временной формы представления в частотную, носит название быстрого преобразования Фурье (БПФ).

Алгоритм БПФ, не смотря на его крайне широкое применение, тоже имеет свои особенности и ограничения. В частности, вся математика БПФ построена на предположении, что обрабатываемый сигнал является периодически повторяющимся процессом. Это предположение может показаться тривиальным, но оно имеет важные последствия.

Любые реальные сигналы всегда случайны и далеко не всегда периодичны. В реальном сигнале очень трудно выделить один период с достаточной точностью, что вызовет существенную погрешность при обработки с помощью БПФ. Для уменьшения этой ошибки, обработку производят не по одному периоду, а по значительно большему их количеству. При этом точность обработки существенно повышается, но она требует серьезных аппаратных ресурсов, поскольку требуется одновременная запись в память большого количества кодовых слов, пропорционального количеству одновременно обрабатываемых периодов.

Другим способом уменьшения количества шагов является кадрирование — искусственное выделение периодичности, применяя так называемые окна к записям форм сигналов. В этом контексте, окно является переменным весовым коэффициентом. При этом значения выборок в концах записей форм сигналов умножаются на нуль, а к промежуточным значениям в середине выборок применяется больший весовой коэффициент (≤1). Поскольку любое число умноженное на нуль равно нулю, это делает концы выборок нулевыми, — это позволяет записи формы сигнала повторять без сбоев (рис. 4.4.)

Кадрирование, вызывающее периодичность

Рис. 4.4 Кадрирование, вызывающее периодичность

Так как кадрирование вносит определенные искажения в запись формы сигнала, его применение будет также искажать и результаты БПФ. В процессе кадрирования либо происходит «сброс» энергии элементов дискретизации с высокими амплитудами в смежные элементы дискретизации, что порождает видимую «кайму» в окрестностях дискретных спектральных составляющих, имеющих высокие амплитуды на экране анализатора, или изменяются амплитуды отдельных составляющих. Так как процесс дискретизация преобразует непрерывное время в дискретные отсчеты, то и результатом БПФ должны быть дискретные частотные (спектральные) составляющие, называемых элементами дискретизации. Следовательно, все «кадры» и «окна» всего лишь позволяют находить компромисс между разрешающей способностью по частоте и амплитуде.

Кадр, в котором выборка практически не претерпевает изменений (поскольку запись формы сигнала всего кадра умножается на постоянное значение — 1), называется прямоугольным кадром. Так как прямоугольный кадр практически не изменяет значения выборок, он не вызывает разброс между элементами дискретизации и предлагает лучшую разрешающую способность по частоте. К сожалению, амплитуды отдельных составляющих могут быть интерпретированы с ошибками, потому что при кадрировании искусственно изменяется периодичность. И наоборот, так называемый кадр Блэкмана-Харриса (Blackman—Harris) изменяет концы записи формы сигнала, чтобы предотвратить нарушение периодичности, что вызывает разброс между элементами дискретизации, но улучшает разрешающую способность по амплитуде.

Наилучшие результаты измерения искажений с использованием алгоритма БПФ получаются при синхронизации генератора с системой БПФ, для того чтобы могли записываться только полные циклы без фазовых ошибок, позволяя использовать прямоугольный кадр. Если истинное синхронное БПФ не возможно, то полезный компромисс — это настройка анализатор на основной частоте и подгонка частоты измерительного генератора для получения минимальной «каймы» в окрестностях составляющей с самой высокой амплитудой.

Если записи формы сигнала зафиксированы многократно, то можно их усреднить, чтобы уменьшить ошибки. Это очень мощная методика, несмотря на то, что она замедляет скорость измерений.

 

 

 

Информация 2018

- melodic metal из Петербурга. Новости, анонсы концертов, фотографии, общение с музыкантами, аудио и видео материалы.

 

Продолжение

Классификация способов снижения нелинейных искажений

Существуют много способов уменьшить искажения и сделать их уровень приемлемым. Для упрощения, будем рассматривать искажения, вызываемые каждым отдельным каскадом, перед обсуждением многокаскадной схемы.

Ниже будут рассмотрены практически все основные способы снижения нелинейных искажений:

• подбор рабочей точки по переменному току;

• подбор рабочей точки по постоянному току;

• уменьшение искажений ограничением определенного параметра;

• уменьшение искажений подавлением определенных составляющих;

• оптимизация схем смещения по постоянному току;

• подбор определенных электронных ламп;

• сопряжение отдельных каскадов со последующими.

Влияние рабочей точки по переменному току

Теоретически триоды генерируют нелинейные продукты преимущественно на 2-й гармонике. Это очень важное преимущество. Будет показано, что в двухтактных усилителях мощности, четные гармоники практически полностью компенсируются, что существенно снижает искажения.

Для проверки усилителей на триодах на предмет нелинейных искажений, рассмотрим усилитель с общим катодом, с лампой типа 417/5842 (рис. 4.5).

Были опробованы двадцать две лампы типа 417/5842 при уровне выходного сигнала + 18 дБ (6,16 В действующего значения), эти результаты были усреднены и представлены в таблице 4.3:

Среди нелинейных продуктов, генерируемых лампами типа 417/5842 явно преобладает 2-я гармоника. Данный типа лампы 417А/5842 является хорошим примером. Даже самый плохой экземпляр электронной лампы данного типа, генерирует искажения на 2-й гармонике, с уровнем на 20 дБ больше, чем на других высших гармониках. Это весьма полезное обстоятельство позволяет использовать нижеследующую формулу, для расчета коэффициента нелинейных искажений, пользуясь данными, полученными при построении графика нагрузочных линий:

В первом приближении, передаточной характеристики триода — это простая степенная функция вида I ≈ V gk3/2 (так называемый «закон трех вторых»). Эта кривая хоть и не является линейной, но и не содержит нелинейностей высших порядков, а кроме того является достаточно гладкой, что должно обуславливать невысокий уровень нелинейных искажений. Эта гипотеза была проверена на схеме μ-повторителя с лампой 7N7/D3a(pnc.4.6).

Для того, чтобы эта проверяемая схема не показала ложно хороший результат при появлении сеточного тока, она возбуждается от источника с сопротивлением 64 кОм, имитируя таким образом копируя реальные условия работы в составе усилителя. Верхний предел измерений был установлен на момент появления сеточного тока при выходном сигнале +34 дБ (СКГ + Ш = —43 дБ).

Нижний предел измерений был установлен способностью аналогового анализатора фиксировать искажения формы слабого сигнала, которая начинает ухудшаться при выходном сигнале +14 дБ (СКГ + Ш = —63,5 дБ). Между этими пределами уровень выходного сигнала изменялся с шагом 1 дБ. Был построен график СКГ + Ш в зависимости от уровня выходного сигнала (рис. 4.7).

График ясно показывает, что значение СКГ + Ш (суммарное значение коэффициента нелинейных искажений плюс шум) прямо пропорционально уровню выходного сигнала. Таким образом, измеренный уровень искажений 1 % при 15 В действующего значения напряжения предполагает искажения 0,1 % при 1,5 В действующего значения. Это обстоятельство крайне полезно, если необходимо оценить искажения триода, при работе со слабыми сигналами — например, как в случае каскада с частотной коррекцией Американской Ассоциации звукозаписи (RIAA), используемый для согласования усилителя с проигрывателем виниловых грампластинок.

Предположение, что искажения каскада усиления на триоде порождают преимущественно 2-ю гармонику и пропорциональны уровню сигнала, справедливо для всех триодов при использовании с реальными резистивными анодными нагрузками. Влияние активной нагрузки (RH = > ∞) подавляет 2-ю гармонику, но мало меняет уровень высших гармоники. После подавления 2-й гармоники, влияние высших гармоник становиться более существенным, вызывая у некоторых триодов искажения, которые не пропорциональны уровню. При использовании активной нагрузки может потребоваться проверка — остаются ли искажения электронной лампы конкретного типа пропорциональны уровню сигнала.

 
 
Сайт создан в системе