Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Типы конденсаторов. Пленочные конденсаторы, изготовленные металлизацией диэлектрика

Из-за технологических трудностей, связанных с одновременным сворачиванием в цилиндр нескольких слоев, образованных металлической фольгой и диэлектрической пленкой, большая часть конденсаторов изготавливается методом напыления алюминиевого слоя толщиной до 12 мкм на одну из сторон диэлектрической пленки для образования обкладки конденсатора. Следует отметить, что этот прием не только облегчает технологию производства конденсаторов, по также позволяет получить более высокие значения удельной, относительно занимаемого объема, емкости, так как пленка со слоем металлизации значительно тоньше фольги, однако, такие конденсаторы характеризуются более высоким значением последовательного эквивалентного сопротивления, ESR. Так как последовательное эквивалентное сопротивление для пленочных металлизированных конденсаторов становится значительным только на высоких частотах, когда оно становится сравнимым с емкостным (реактивным) сопротивлением конденсатора, этот фактор не вызывает серьезных осложнений. Однако фольговые конденсаторы часто рекомендуются их производителями, как более подходящие для использования в высокочастотных импульсных цепях, именно по этой причине.

Уже упоминалось, что из-за гранулированной структуры напыляемой металлической пленки, которая применяется при изготовлении пленочных резисторов и вызвана наличием небольшого количества посторонних примесей, в них возникают избыточные шумы, в силу чего пленочные резисторы характеризуются всегда несколько более высоким уровнем шумов по сравнению с проволочными. Так как обкладки в металлизированных пленочных конденсаторах также получают методами вакуумного напыления, то не будет очень самонадеянным предположить, что конденсаторы будут страдать от точно такой же проблемы, связанной с качеством металлической пленки, с тем лишь только отличием, что конденсаторы не подвергались планомерной проверке относительно уровня генерируемых шумов. Хотя чисто субъективные ощущения позволяют сделать вывод, что при использовании фольговых конденсаторов качество звучания радиоаппаратуры было лучше и, возможно, что причина этого явления заключается в технологических проблемах изготовления конденсаторов.

Металлизированные бумажные конденсаторы

Металлизированная бумага являлась традиционным диэлектриком в конденсаторах, которые использовались в классических ламповых усилителях, и в зависимости от бумаги и ее способности к пропитке качество изделий менялось от весьма посредственных до хороших. К сожалению, если герметизация металлизированных бумажных конденсаторов оказывается несколько худшей, чем идеальная, атмосферная влага проникает внутрь конденсатора, приводя к высоким токам утечки. Автору как-то довелось приобрести стереофонический усилитель мощности Leak Stereo 20, в котором использовались бумажные конденсаторы связи, и все они, как было потом установлено, оказались с большими токами утечки.

Использование для пропитки бумаги (минерального) масла или эпоксидных смол значительно улучшает положение, до такой степени, что изготовленный конденсатор имеет почти такие же хорошие характеристики, что и полипропиленовый конденсатор. Так как бумажные конденсаторы обладают свойством «самозалечивания», они широко используются в энергетике. При возникновении пиков перенапряжения бумажная изоляция пробивается в самом слабом месте, а напыленная металлическая пленка при этом испаряется, предотвращая, таким образом, возникновение короткого замыкания и вызванных им серьезных последствий.

Слюдяные посеребренные конденсаторы

Слюдяные посеребренные конденсаторы, имеющие небольшие значения емкости, традиционно использовались в ВЧ цепях, а также фильтрах звукового частотного диапазона, где необходима особенно высокая стабильность характеристик. Слюда представляет кристаллический материал, который легко расщепляется на отдельные чрезвычайно тонкие слои, на которые потом наносятся пленка из серебра. Сборка таких листов в пакеты обеспечивает очень низкое значение индуктивности конденсатора.

Так как слюда является природным материалом, она подвержена все капризам, свойственным неоднородным материалам. Существует несколько различных по свойствам типов слюды, но слюда мусковит обеспечивает изготовление конденсаторов с наименьшими потерями. Хотя мусковитная слюда и полистирол характеризуются сравнимыми по значению потерями (0,001 < tgδ < 0,0002), диэлектрические потери в слюде примерно в 80 раз выше по сравнению с полистиролом, поэтому использование полистирола в качестве диэлектрика является, как правило, предпочтительнее.

Из-за более высокой стоимости и большего разброса в параметрах посеребренные слюдяные конденсаторы сегодня практически повсеместно заменены на полистироловые, которые, в свою очередь, постепенно заменяются на полипропиленовые.

Керамические конденсаторы

Керамические конденсаторы предназначаются в первую очередь для радиочастотных узлов радиоприемников и радиопередатчиков. В аналоговых цепях звуковых трактов они обычно не используются!

До настоящего времени рассматриваемые диэлектрики характеризовались значением относительной диэлектрической проницаемости εr < 10, однако для конденсаторов с керамическим диэлектриком значение εr, может достигать 200 000! Как правило, для изготовления керамических конденсаторов используется титанат бария, или титанат стронция, которые являются пьезоэлектрическими материалами. Это означает, что они способны генерировать электрическое напряжение при приложении к ним механических воздействий (в частности, эти материалы являлись основой для керамических картриджей, которые использовались для воспроизведения пластинок в «музыкальных центрах» весьма посредственного качества).

Керамические конденсаторы могут использования в качестве высокочастотных блокировочных конденсаторов в цифровых цепях или цепях подогревателей, в которых их нестабильность величины емкости и низкое значение tgδ не вызывает возникновение существенных проблем.

 

 

 

Информация 2018

 

Продолжение

Электролитические конденсаторы характеризуются, прежде всего, строго определенной полярностью их включения. При обратной полярности их включения в схеме они образуют короткозамкнутую цепь, что приводит к повреждению задающей схемы, причем все это сопровождается выделением тепла, появлением дыма и ядовитых испарений в самом конденсаторе. Алюминиевые электролитические конденсаторы могут при этом даже взорваться и обильно оросить близлежащие компоненты схемы жидким электролитом и алюминиевой фольгой, что может привести к дополнительным повреждениям аппаратуры.

Некоторые разработчики испытывают стойкое предубеждение против использования электролитических конденсаторов, однако, со всеми присущими им недостатками электролитические конденсаторы являются очень полезными компонентами, и на процесс проектирования схемы будет накладываться очень сильные ограничения, если полностью отказаться от их использования. Большая же часть неприятностей, приписываемым электролитическим конденсатором, происходит из-за их неправильного применения в схемах.

Электролитические конденсаторы характеризуются очень высокой удельной емкостью относительно своего объема, достигающей практически предельного значения за счет исключения почти всех недостатков, присущих обычному плоскому конденсатору. Зазор между обкладками конденсатора сведен к минимуму, поверхность пластин достигает максимального значения, а значение относительной диэлектрической проницаемости оксида алюминия εr ≈ 8,5 превышает аналогичный показатель диэлектрических пленок, для которых εr ≈ 3. Принцип действия всех электролитических конденсаторов очень похож, поэтому рассмотрение ограничится только конденсаторами на основе алюминия.

 
 
Сайт создан в системе