Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Частотные характеристики используемых на практике LC-фильтров

До настоящего времени исследование выпрямляющих свойств и фильтрации переменных составляющих в источниках питания ограничивалось анализом поведения схемы в области низких частот, однако, наступил момент, когда необходимо расширить исследование поведение схемы в диапазоне от постоянного тока до области более высоких частот. Для того, чтобы значительно ослабить низкие (порядка 100 Гц) частоты, необходим LC-фильтр, обладающий большой индуктивностью, однако он неизбежно будет обладать внутренней параллельной емкостью. С другой стороны, конденсатор обладает последовательно включенной паразитной индуктивностью. Наличие этих паразитные элементы схемы означает, что любой используемый на практике LC-фильтр имеет сложную частотную характеристику, которую можно подразделить на четыре основные области. Пример такой характеристики приведен на рис. 6.21. Несмотря на неплохую равномерность этой зависимости, характеристика была снята на реально существующем образце LC-фильтра.

Область 1

Эта область характеристики является единственной, которой возможно управлять непосредственно, по этой причине она заслуживает особенного внимания. Отвлекаясь от потерь, обязанных своим происхождением наличию сопротивления постоянной составляющей тока, следует помнить, что фильтр нижних частот, ФНЧ, не ослабляет сигнал на частотах, лежащих ниже частоты низкочастотного резонанса fres(LF):

Экспериментально полученная частотная характеристика

Рис. 6.21 Экспериментально полученная частотная характеристика LC-фильтра (дроссель с индуктивностью 20 Гни номинальным током 50 мА, полипропиленовый конденсатор с емкостью 120 мкФ и рабочим напряжением 400 В)

Целью является задать частоту такого «дозвукового» (инфразвукового) резонанса как только возможно более низкой путем выбора значений емкости и индуктивности максимально большими, так как каждая октава акустического диапазона, в пределах которой можно снизить fres(LF) обеспечивает дополнительные 12 дБ фильтрации (ослабления). Если на частоте НЧ резонанса добротность фильтра Q > 0,707, то на частотной характеристике фильтра будет наблюдаться выброс, поэтому достаточно удобным приемом является контроль величины добротности Q:

в которой, L — индуктивность дросселя; RDC — резистивное сопротивление обмотки дросселя; С — емкость сглаживающего конденсатора.

В идеальном случае резонанс должен быть подавлен (Q = 0,5), что может быть достигнуто включением последовательно дросселю внешнего резистора. Если быть точным, то сопротивление нагрузки, включенное параллельно конденсатору, также подавляет резонанс, а это может быть представлено как бы в виде умозрительного последовательно включенного с дросселем дополнительного резистора rnoljonal , величину которого можно определить, используя соотношение:

Однако, подавляющий (демпфирующий) эффект, вызываемый резистором нагрузки, обычно бывает незначительным. Например, стабилизатор с последовательным регулированием, или последовательный стабилизатор, обеспечивает постоянное значение тока или является бесконечно большим сопротивлением по переменной составляющей для цепи сглаживания, по этой причине он вовсе не вносит вклада в подавление резонанса сглаживающего фильтра.

В качестве традиционного на практике часто используется следующий пример: в фильтре устанавливается дроссель, имеющий индуктивность 15 Гн и внутреннее сопротивление обмотки 220 Ом, подключенный к бумажному с масляной пропиткой конденсатору с емкостью 8 мкФ. Для этого фильтра частота НЧ резонанса fres(LF) = 14,5 Гц, а значение добротности Q = 5,27. Полученное значение Q является слишком большим, значение fres(LF) находится слишком близко к границе звукового диапазона, однако использование дополнительного последовательно включенного резистора с сопротивлением 2,48 кОм, необходимого по условию достижения критического демпфирования, привело бы к ненужным потерям высокого напряжения и значительно увеличило бы выходное сопротивление источника питания. Гораздо лучшим выходом было бы заменить конденсатор 8 мкФ на полипропиленовый конденсатор с емкостью 120 мкФ, так как это обеспечило бы значения частоты fres(LF) = 3,75 Гц, Q = 1,36, которое оказалось бы гораздо более подходящим. Использование дополнительного последовательно включенного резистора с сопротивлением 447 Ом позволило бы снизить значение добротности до величины Q = 0,5.

Область 2

Реактивное сопротивление дросселя удваивается при каждом увеличении частоты на одну октаву, тогда как реактивное сопротивление конденсатора уменьшается вдвое, что дает знакомый угол наклона АЧХ, равный 12 дБ/октаву.

Область 3

Здесь начинает оказывать влияние шунтирующая паразитная емкость дросселя. На той частоте, когда реактивное сопротивление шунтирующей емкости становится равным индуктивному сопротивлению дросселя, в контуре наступает резонанс. Поэтому эта частота может быть определена, как начало области высокочастотного резонанса fres(LF).

На частотах, превышающих эту частоту собственного резонанса (для обычных высоковольтных дросселей она колеблется от 3 до 15 кГц), параллельная емкость совместно со сглаживающим конденсатором образуют делитель напряжения, потери в котором остаются постоянными с изменением частоты:

Область 4

Последовательное индуктивное сопротивление накопительного конденсатора становится значительным по величине, что приводит совместно с параллельным сопротивлением дросселя к образованию паразитного фильтра верхних частот, ФВЧ, поэтому выходной фон используемого на практике фильтра возрастает на 12 дБ/октаву.

Эти общие представления о фильтрации могут быть рассмотрены в упрощенном виде для идеализированной частотной характеристики LC-фильтра, образованной из трех прямых линий, которые можно перемещать как в вертикальном, так и горизонтальном направлениях (рис. 6.22).

• Спад линии А с увеличением частоты составляет 12 дБ/октаву, она смещается горизонтально влево при увеличении индуктивного сопротивления дросселя и величины емкости сглаживающего конденсатора.

Общая модель универсального LC-фильтра

Рис. 6.22 Общая модель универсального LC-фильтра

• Линия В снижается вертикально по мере снижения паразитной емкости дросселя. Емкость между соседними слоями обмотки дросселя может быть уменьшена за счет размещения между ними заземленных электростатических экранов.

• Подъем линии С с увеличением частоты составляет 12 дБ/октаву, линия смещается горизонтально вправо, когда последовательное индуктивное сопротивление сглаживающего конденсатора снижается. Необходимо обеспечить минимальную длину проводника от фольговых обкладок конденсатора до точек подключения к дросселю и нагрузке.

Для фильтра с оптимальными параметрами заштрихованная площадь должна быть максимальной. Существует точка, после которой дальнейшее снижение паразитной емкости дросселя невозможно, так как линия В доходит до точки пересечения прямой А и прямой С.

 

 

 

Информация 2018

 

Продолжение

Линии А и С на рассмотренной выше идеализированной модели демонстрируют, что любой LC-фильтр может работать эффективно только в ограниченном диапазоне частот (или октав) и что качество фильтрации должно ухудшаться на высоких частотах. Таким образом, для создания широкополосного фильтра необходимо каскадное включение нескольких фильтров, рассчитанных на различные диапазоны частот. Сначала фильтруются низкие частоты, потому что:

• выходное напряжение выпрямителя содержит низкочастотные помехи, характеризующиеся большой амплитудой, для фильтрации которых, собственно говоря, и используется НЧ дроссель, но которые приведут к насыщению ВЧ дросселя;

• по мере увеличения частоты, влияние паразитных емкости и индуктивности фильтрующих элементов становится все более значительным. Это означает, что даже проводник длиной 100 мм обладает некоторой индуктивностью и может быть использован в качестве дросселя в СВЧ диапазоне, но в то же время он представляет и антенну, длина которой должна быть минимальной в области пространства, расположенного в непосредственной близости с нагрузкой.

Поэтому, постоянная времени LC будет равна:

В качестве обычного примера можно начать рассмотрение с источника питания с дросселем, имеющим индуктивность 15 Гн и фильтрующий конденсатор с емкостью 120 мкФ, предназначенные уменьшить напряжения пульсаций до значения, меньше одного вольта. Стандартный дроссель с индуктивностью 15 Гн имеет, как правило, собственную частоту ВЧ резонанса fres(LF) ≈ 3 кГц. Поэтому, если необходимо продолжить ослабление фильтра, равное закону ослабления 12 дБ/октаву, до неограниченно высоких частот, то необходимо будет принять меры для того, чтобы для следующего используемого LC-фильтра частота собственного НЧ резонанса fres(LF), определяемая как точка пересечения прямых А и В, равнялась бы примерно 3 кГц. Частота НЧ резонанса определяется:

Такое значение произведения LC может быть получено при использовании дросселя с индуктивностью 100 мГн, намотанном на ферритовом сердечнике, совместно с конденсатором, имеющим емкость 33 нФ, и подключенным со стороны нагрузки.

После установки второго каскада (звена) фильтрации может быть подключен любой стабилизатор, так как влияние на него ВЧ помех было бы минимальным. В очень критических ситуациях мог бы использоваться третий каскад фильтрации, состоящий их ферритовой шайбы, предназначенной для диапазона очень высоких частот (ОВЧ), и подключенной к резистору анодной нагрузки через проходной конденсатор, припаянный к экранирующему кожуху схемы в точке, расположенной непосредственно с анодной нагрузкой, гарантируя, таким образом, что окончательная высокочастотная фильтрация происходит в области, как можно ближе расположенной к нагрузке и что при этом будет минимальная длина излучающих проводников.

 
 
Сайт создан в системе