Содержание

Общие сведения,
классификация
Устройство и работа диода
Устройство и работа триода
Электронная эмиссия
Термоэлектронные катоды
Особенности устройства
электронных ламп
Физические процессы
Закон степени трех вторых
Анодная характеристика
Параметры
Рабочий режим. Применение
диода для выпрямления
переменного тока
Основные типы
Физические процессы
Токораспределение
Действующее напряжение и
закон степени трех вторых
Характеристики
Параметры
Особенности
Усилительный каскад с
триодом
Параметры усилительного
каскада
Аналитический расчет и
эквивалентные схемы
усилительного каскада
Графоаналитический расчет
режима усиления
Генератор с триодом
Межэлектродные емкости
Каскады с общей сеткой и
общим анодом
Недостатки триодов
Основные типы приемно-
усилительных триодов
Устройство и работа тетрода
Устройство и работа пентода
Схемы включения тетродов
и пентодов
Характеристики тетродов
и пентодов
Параметры тетродов и
пентодов
Межэлектродные емкости
тетродов и пентодов
Устройство и работа
лучевого тетрода
Характеристики и параметры
лучевого тетрода
Рабочий режим тетродов
и пентодов
Пентоды переменной
крутизны
Краткие сведения о
различных типах
тетродов и пентодов
Специальные лампы
Общие сведения
Электростатические
электронно-лучевые трубки
Магнитные электронно-
лучевые трубки
Люминесцентный экран
Краткие сведения о
различных электронно-
лучевых трубках
Электрический разряд
в газах
Тлеющий разряд
Стабилитроны
Тиратроны тлеющего разряда
Индикаторные приборы
Дисплеи
Краткие сведения о
различных газоразрядных
приборах
Фотоэлектронная эмиссия
Электровакуумные
фотоэлементы
Фотоэлектронные умножители
Причины собственных шумов
Шумовые параметры
Межэлектродные емкости
и индуктивности выводов
Инерция электронов
Наведенные токи в
цепях электродов
Входное сопротивление
и потери энергии
Импульсный режим
Основные типы электронных
ламп для СВЧ
Общие сведения
Пролетный клистрон
Отражательный клистрон
Магнетрон
Лампы бегущей и
обратной волны
Амплитрон и карматрон
Надежность и испытание
электровакуумных приборов
Усилитель на триоде
с общим катодом
Ограничения по выбору
рабочей точки
Режим в рабочей точке
Катодное смещение
Выбор величины
сопротивления резистора
в цепи сетки
Выбор выходного
разделительного
конденсатора
Вредное влияние проходной
емкости лампы и пути
его уменьшения
Применение
экранированных ламп
Каскод (каскодная схема)
Катодный повторитель
Каскад с общим катодом
как приемник
неизменяющегося тока
Пентоды в качестве
приемников
неизменяющегося тока
Катодный повторитель
с активной нагрузкой
Катодный повторитель Уайта
μ-повторитель
Выбор верхней лампы для
μ -повторителя
Параллельно управляемый
двухламповый усилитель
(SRPP)
β-повторитель
Дифференциальная пара
(дифференциальный каскад)
Коэффициент реакции
питающего напряжения
(PSRR)
дифференциальной пары
Полупроводниковые
приемники неизменяющегося
тока для
дифференциальной пары
Использование транзисторов
в качестве активной нагрузки
для электронных ламп
Классификация искажений.
Принципы оценки линейных
искажений
Принципы измерения
нелинейных искажений
Измерение и интерпретация
искажений
Совершенствование
измерений нелинейных
гармонических искажений
Цифровая обработка сигналов
Особенности проектирования
усилителей с малыми
искажениями
Работа с сеточным током
и нелинейные искажения
Уменьшение искажений
подавлением (компенсацией)
Проблемы смещения
по постоянному току
Выбор электронной лампы по
критерию низких искажений
Проблема сопряжения одного
каскада со следующим
Усилитель класса А для
электромагнитных головных
телефонов с непосредств.
междукаскадной связью
Радиокомпоненты -
Общие сведения
Ряды стандартизованных
значений сопротивлений
Металлизированные
пленочные резисторы
Проволочные резисторы
Конденсаторы -
Общие сведения
Металлические конденсаторы
с воздушным диэлектриком
Пленочные конденсаторы,
изготовленные
металлизацией диэлектрика
Алюминиевые
электролитические
конденсаторы
Основные вопросы,
возникающие при
выборе конденсатора
Общие сведения о
катушках индуктивности
Трансформаторы -
Общие сведения
Трансформаторы.
Намагничивание и потери
Модели трансформаторов
Почему необходимо
использовать трансформаторы
Определение параметров
неизвестного трансформатора
Основные виды
источников питания
Выпрямление переменного
тока
Одиночный накопительный
конденсатор в роли
сглаживающего элемента
Влияние напряжения
пульсаций на выходное
напряжение
Насыщение сердечника
трансформатора
Критерии выбора силового
трансформатора
Источник питания со
сглаживающим дросселем
Номинальное значение
тока дросселя
Выбросы тока и
демпфирующие элементы
Использование накопительного
конденсатора для снижения
высоковольтного напряжения
Частотные характеристики
используемых на практике
LC-фильтров
Широкополосная фильтрация
Выпрямители с умножением
(умножители) напряжения
Классическая схема
последовательного
стабилизатора
Двухтранзисторная схема
последовательного
стабилизатора
Стабилизатор цепи сеточного
смещения с регулируемым
выходным напряжением
Источники питания низкого
напряжения и синфазный шум
Ламповый стабилизатор
напряжения
Способы увеличения
выходного тока стабилизатора
Коэффициент режекции
источника питания
Включение сглаживающих
конденсаторов
Перенапряжения при
включении схемы
Составление предварительной
схемы блока питания
Высоковольтный выпрямитель
и стабилизатор
Особенности смещения
подогревателей ламп
Схема улучшенного
источника питания
Рабочий режим
Увеличение максимально
допустимого Vrrm
Выходной каскад класса А
с несимметричным выходом
Особенности акустических
систем
Неидеальности
трансформаторов
Режимы работы усилительных
приборов. Классы усилителей
Двухтактный выходной каскад
Выходной каскад по
ультралинейной схеме
Трансформаторный катодный
повторитель
Усилители без выходного
трансформатора
Составляющие блока
усилителя мощности
Предоконечный каскад блока
усилителя мощности
Фазоинверсный каскад
Дифференциальный усилитель
или пара с катодной связью
«Согласованный»
фазоинвертор
Общие проблемы
устойчивости усилителей
Подавление первой
доминанты ВЧ составляющей
Низкочастотное
самовозбуждение усилителя
Усилитель Williamson
Усилитель Milliard 5-20
Усилитель Quad II
Выбор выходной лампы
Выбор статической рабочей
точки с учетом Pвых и КНИ
Точное определение
выходного трансформатора
Особенность выпрямление
высоковольтного напряжения
Варианты применения
стабилизатора ВВ напряжения
Требования к каскаду
предоконечного усиления
Определение рабочей точки
предоконечного каскада
Проверка работоспособности
усилителя
Пример разработки
двухтактного УМ
Оптимизация входного и
фазоинверсного каскадов
Расчет R катодного смещения
лампы и R обратной связи
Выбор элементов
оконечного каскада
Разработка усилителей
мощностью более 10 Вт
Активные кроссоверы
и схема Зобеля
Выбор лампы для
оконечного каскада
Требования к предоконечному
каскаду усиления
Источники питания и
постоянная токовая нагрузка
Второй дифференциальный
усилитель и выходной каскад
Первый дифференциальный
усилитель и линейность х-ки
Каскодная схема постоянной
токовой нагрузки
Постоянная токовая нагрузка
первого диф. каскада
Элементы, повышающие ВЧ
устойчивость. Итоговая схема
Схема источника питания
«Потомок от усилителя Beast»
Расчет уровня фонового
шума от ИП
Особенности цифрового
сигнала от компакт-диска
Требования к предусилителю
Технические требования
к линейному каскаду
Традиционный линейный
каскад
Пути достижения заданных
требований и выбор лампы
Основные проблемы
регулирования громкости
Переключаемые аттенюаторы
Расчет переключаемого
аттенюатора
Табличные вычисления для
расчета регулятора громкости
Светочувствительные
резисторы и громкость
Входной переключатель
Частотный корректор RIAA
Влияние провода
звукоснимателя
Требования к блоку
частотной коррекции
Метод частотной коррекции
стандарта RIAA
Раздельное выравнивание
характеристики RIAA
Шумы и влияние входной
емкости входного каскада
Учет собственных
шумов лампы
Улучшение шумовых
характеристик с RIAA
Расчет элементов на 75 мкс
Параметры цепей на
3180 мкс и 318 мкс
Симметричный вход и
подключение звукоснимателя
Симметричный предусилитель
Возможности исключения
линейного каскада
Вариант RIAA с исполь-
зованием лампы типа ЕС8010
Оптимизация характеристик
входного трансформатора
Анализ работы блока RIAA
Практические методы
настройки блока RIAA
Линейный каскад
О межблочных и
акустических кабелях

 

 
 

Симметричный вход и провода для подключения звукоснимателя

Симметричный (уравновешенный) вход является общепринятым техническим приемом, используемым в радиопередающих и звукозаписывающих студиях для защиты звукового сигнала от влияния внешних электромагнитных полей. Он становится особенно важным при использовании слабых сигналов, особенно от микрофонов, которые, как правило, имеют кабели большой протяженности (некоторые, в особенности телевизионные передающие студии, используют микрофонные кабели длиной до 1 км!).

Симметричным источником сигнала является такой источник, у которого каждый вывод источника имеет симметричную (или уравновешенную, равную) нагрузку, подключенную к заземляющей шине. Достаточно часто используется вариант, при котором единственным путем для прохождения тока от вывода на землю являются паразитные емкости (разумеется, только для переменной, а не постоянной составляющей сигнала). В таком случае для источника сигнала часто используют термин «плавающий». Соединительные кабели для симметричных систем имеют, таким образом, два совершенно идентичных для прохождения сигнала провода, или плеча, предназначенных для обеспечения баланса, и внешнюю экранирующую оболочку. Для того, чтобы обеспечить уравновешенный или симметричный режим работы, входной каскад следующего усилителя должен иметь точно уравновешенные значения собственного паразитного сопротивления относительно земли, и чаще всего в его схеме используется либо дифференциальный усилитель (более дешевый вариант), либо тщательно рассчитанный симметрирующий трансформатор (гораздо более лучший, но и более дорогой вариант).

При внесении уравновешенного соединительного кабеля в электромагнитное поле, в каждом из проводников кабеля индуцируются совершенно идентичные токи шума (наводок). Значения последовательных сопротивлений для каждой ветви кабеля совершенно одинаковы, также будут абсолютно равны значения шунтирующих емкостей и сопротивлений относительно земли. В силу этого токи наводок, или сигнала шума, в обеих ветвях характеризуются одинаковыми значениями падений напряжений и фазового сдвига, которые затем поступают на вход усилителя. Так как эти сигналы представляет собой синфазный сигнал, то в операционном усилителе происходит ослабление синфазного сигнала, тогда как полезный звуковой сигнал, представляя собой разностный сигнал, будет усиливаться.

Выходное напряжение стандартного звукоснимателя с подвижной катушкой составляет на частоте 1 кГц примерно 200 мкВ при скорости перемещения иглы 5 см/с, но этот же уровень сигнала на частоте 50 Гц перед его поступлением в блок частотной коррекции примерно на 17 дБ ниже, то есть составляет примерно 28 мкВ. Достижение цели, когда фон переменного тока будет практически неощутим при таком уровне полезного сигнала, становится достаточно нетривиальной задачей, поэтому на помощь необходимо привлечь любые доступные средства. Головка звукоснимателя изначально является симметричным устройством, поэтому необходимо рассмотреть, что могло бы привести к нарушению условия равновесия?

Для восстановления баланса необходимо немедленно заменить выходной соединительный кабель звукоснимателя, отказавшись от применения коаксиального кабеля. Соединительный кабель должен быть заменен проводом, так называемой витой парой, имеющей сплошной экран для каждого канала. Использование двух коаксиальных кабелей, отдельного для каждого канала, не представляется разумным выходом, так как увеличенное расстояние между внутренними проводящими жилами кабелей приведет к небольшому, но все-таки отличию в величинах токов шума для каждого плеча, значительно снижая эффективность борьбы с шумом.

Автор в своем звукоснимателе использовал для внутреннего соединения витую пару из сплошного серебряного провода диаметром 0,7 мм в изоляции из фторопласта, с экранирующей оплеткой поверх изоляции, выполняющей роль электростатического экрана. Оба витых провода были затем помещены в общий плетенный экран, который дополнительно удерживал оба провода вместе. Все экранирующие оплетки имели надежное электрическое соединение с металлической конструкцией рычага звукоснимателя, а также с металлическим основанием, на котором установлен шарнир крепления тонарма (с использованием клеммы, к которой подключался заземляющий провод сети питания). Все экранирующие оплетки провода должна быть сплошными и плотными, без пропусков и не образовывать пустот, поэтому обычный антенный кабель не может быть использован. Студийный видеокабель, либо многожильный (с центральным расположением жил) являются идеальными представителями кабельных изделий, не имеющих пустот в экранирующей оплетке. В случае, если внешняя пластиковая оболочка бывает по каким-то причинам удалена, то на экранирующей оплетке легко образуются складки и пустоты за счет отслаивания от внутренних слов кабеля. Помимо этого, кабель желательно помещать в изолирующий нейлоновый рукав для предотвращения дополнительных шумов, возникающих при касании экрана кабеля с другими заземленными металлическими частями конструкции.

Для подключения этого кабеля к предусилителю не должны использоваться, соединительные аудио-разъемы, так как они не являются симметричными соединителями, а идеальными для использования являются так называемые «профессиональные» соединительные 5-штыревые разъемы стандарта DIN или XLR с металлическими корпусами, хотя почти всегда кабельный ввод придется увеличивать в размере. Другим, и более громоздким вариантом, является использование двух 3-штыревых разъемов стандарта XLR, но это потребует применения индивидуальных (с двойным экранированием) кабелей, проложенных от основания тонарма, либо использования разделки кабеля под два разъема в районе подключения к предусилителю, которую выполнить квалифицированно бывает достаточно сложно.

Внутри тонарма по большей части все четыре провода от звукоснимателя просто скручены между собой (используются тонкие и без экранирования провода), так как это, прежде всего, значительно облегчает прокладку жгута проводов. Можно значительно снизить перекрестные помехи между каналами и фоновый шум за счет свивания проводов каждой индивидуальной пары для каждого канала на всем протяжении тонарма с последующим возвращением к схеме свивания четырех проводов (которая бывает часто необходима для снижения сопротивления вращению при прохождении проводов через подшипники шарнира и подключении их к выходному кабелю). Так как это изменение воздействует, в основном, на продольные токи, то оно имеет более выраженный положительный эффект в предусилителях с симметричным (уравновешенным) входом, но также действует благотворно и в предусилителях с несимметричным входом. Мартин Бэстин, получивший широкую известность своими модификациями продукции компании Garrard, заявил, что данный метод он использует уже много лет.

Уравновешенные (симметрированные) провода особенно выгодно применять для звукоснимателей с подвижной катушкой, помимо этого они позволяют снижать фоновый шум даже в случаях их использования с предусилителями, имеющими несимметричный вход.

 

 

 

Информация 2018

 

Продолжение

Автор прекрасно осознает, что предлагаемый ниже симметричный предусилитель представляет с эволюционной точки зрения тупиковый вариант (хотя в обобщенном с философской точки зрения виде данное условие не казалось вызывающим особую тревогу в течение нескольких последних миллионов лет). Идеальной схемой могла бы являться таковая, в которой сигнал оставался бы уравновешенным на всем своем пути прохождения от симметричного звукоснимателя, или цифро-аналогового преобразователя, до двухтактного выходного каскада, но это исключало бы использование активных кроссоверов (активные кроссоверы и без того являются достаточно сложными, чтобы вдобавок пытаться делать их еще и симметричными). Тем ни менее, симметричный предусилитель выполняет огромную роль в улучшении чувствительности в том случае, если должны использоваться пассивные громкоговорители или электро-статические головные телефоны вкупе с предназначенным для них усилителем. Поэтому схема была сохранена (рис. 8.30).

Входной каскад

Для того, чтобы реализовать все без исключения преимущества использования симметричной работы, в данном предусилителе был использован специально разработанный компанией Sowter Transformers of Ipswich повышающий трансформатор для звукоснимателя с подвижной катушкой имеющего сопротивление 3 Ом. Первая модификация трансформаторов типа 8055, входная обмотка которых питалась от источника, имеющего сопротивление 3 Ом, в выход представлял собой чисто активную нагрузку с сопротивлением 2,7 кОм, имела абсолютно плоскую амплитудно-частотную характеристику с отклонением ±0,1 дБ в диапазоне частот от 12 Гц до 100 кГц, тогда как ВЧ фазо-частотная характеристика имела чистую задержку ± 1° до частоты 50 кГц.

 
 
Сайт создан в системе